Godunov method for nonconservative hyperbolic systems
María Luz Muñoz-Ruiz; Carlos Parés
ESAIM: Mathematical Modelling and Numerical Analysis (2007)
- Volume: 41, Issue: 1, page 169-185
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Birkhäuser (2004).
- A. Bressan, H.K. Jenssen and P. Baiti, An instability of the Godunov Scheme. arXiv:math.AP/0502125 v2 (2005).
- M.J. Castro, J. Macías and C. Parés, A Q-Scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. Math. Mod. Num. Anal.35 (2001) 107–127.
- F. Coquel, D. Diehl, C. Merkle and C. Rohde, Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows, in Numerical Methods for Hyperbolic and Kinetic Problems, IRMA Lectures in Mathematics and Theoretical Physics, Proceedings of CEMRACS 2003.
- G. Dal Maso, P.G. LeFloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl.74 (1995) 483–548.
- F. De Vuyst, Schémas non-conservatifs et schémas cinétiques pour la simulation numérique d'écoulements hypersoniques non visqueux en déséquilibre thermochimique. Ph.D. thesis, University of Paris VI, France (1994).
- E. Godlewski and P.A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer (1996).
- L. Gosse, A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. Math. Appl.39 (2000) 135–159.
- L. Gosse, A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. Math. Models Methods Appl. Sci.11 (2001) 339–365.
- J.M. Greenberg and A.Y. LeRoux, A well balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal.33 (1996) 1–16.
- J.M. Greenberg, A.Y. LeRoux, R. Baraille and A. Noussair, Analysis and approximation of conservation laws with source terms. SIAM J. Numer. Anal.34 (1997) 1980–2007.
- A. Harten, P.D. Lax and B. Van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev.25 (1983) 35–61.
- T. Hou and P.G. LeFloch, Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comp.62 (1994) 497–530.
- E. Isaacson and B. Temple, Convergence of the 2 x 2 Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math.55 (1995) 625–640.
- P.D. Lax and B. Wendroff, Systems of conservation laws. Comm. Pure Appl. Math.13 (1960) 217–237.
- P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form. Institute Math. Appl., Minneapolis, Preprint 593 (1989).
- P.G. LeFloch, Graph solutions of nonlinear hyperbolic systems. J. Hyper. Differ. Equa.2 (2004) 643–689.
- P.G. LeFloch and A.E. Tzavaras, Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal.30 (1999) 1309–1342.
- R.J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comp. Phys.146 (1998) 346–365.
- C. Parés, Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal.44 (2006) 300–321.
- C. Parés and M. Castro, On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow water systems. Math. Mod. Num. Anal.38 (2004) 821–852.
- A.I. Volpert, The space BV and quasilinear equations. Math. USSR Sbornik73 (1967) 225–267.