Homogenization of thin piezoelectric perforated shells

Marius Ghergu; Georges Griso; Houari Mechkour; Bernadette Miara

ESAIM: Mathematical Modelling and Numerical Analysis (2007)

  • Volume: 41, Issue: 5, page 875-895
  • ISSN: 0764-583X

Abstract

top
We rigorously establish the existence of the limit homogeneous constitutive law of a piezoelectric composite made of periodically perforated microstructures and whose reference configuration is a thin shell with fixed thickness. We deal with an extension of the Koiter shell model in which the three curvilinear coordinates of the elastic displacement field and the electric potential are coupled. By letting the size of the microstructure going to zero and by using the periodic unfolding method combined with the Korn's inequality in perforated domains, we obtain the limit model.

How to cite

top

Ghergu, Marius, et al. "Homogenization of thin piezoelectric perforated shells." ESAIM: Mathematical Modelling and Numerical Analysis 41.5 (2007): 875-895. <http://eudml.org/doc/250048>.

@article{Ghergu2007,
abstract = { We rigorously establish the existence of the limit homogeneous constitutive law of a piezoelectric composite made of periodically perforated microstructures and whose reference configuration is a thin shell with fixed thickness. We deal with an extension of the Koiter shell model in which the three curvilinear coordinates of the elastic displacement field and the electric potential are coupled. By letting the size of the microstructure going to zero and by using the periodic unfolding method combined with the Korn's inequality in perforated domains, we obtain the limit model. },
author = {Ghergu, Marius, Griso, Georges, Mechkour, Houari, Miara, Bernadette},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Computational solid mechanics; homogenization; perforations; piezoelectricity; shells.; existence; Koiter shell model; Korn's inequality; periodic unfolding method},
language = {eng},
month = {10},
number = {5},
pages = {875-895},
publisher = {EDP Sciences},
title = {Homogenization of thin piezoelectric perforated shells},
url = {http://eudml.org/doc/250048},
volume = {41},
year = {2007},
}

TY - JOUR
AU - Ghergu, Marius
AU - Griso, Georges
AU - Mechkour, Houari
AU - Miara, Bernadette
TI - Homogenization of thin piezoelectric perforated shells
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2007/10//
PB - EDP Sciences
VL - 41
IS - 5
SP - 875
EP - 895
AB - We rigorously establish the existence of the limit homogeneous constitutive law of a piezoelectric composite made of periodically perforated microstructures and whose reference configuration is a thin shell with fixed thickness. We deal with an extension of the Koiter shell model in which the three curvilinear coordinates of the elastic displacement field and the electric potential are coupled. By letting the size of the microstructure going to zero and by using the periodic unfolding method combined with the Korn's inequality in perforated domains, we obtain the limit model.
LA - eng
KW - Computational solid mechanics; homogenization; perforations; piezoelectricity; shells.; existence; Koiter shell model; Korn's inequality; periodic unfolding method
UR - http://eudml.org/doc/250048
ER -

References

top
  1. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal.23 (1992) 1482–1518.  Zbl0770.35005
  2. T. Arbogast, J. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow in homogenization theory. SIAM J. Math. Anal.21 (1990) 823–836.  Zbl0698.76106
  3. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic methods in periodic media. North Holland (1978).  
  4. A. Bourgeat, J.B. Castillero, J.A. Otero and R.R. Ramos, Asymptotic homogenization of laminated piezocomposite materials. Int. J. Solids Structures35 (1998) 527–541.  Zbl0930.74045
  5. D. Caillerie and E. Sanchez-Palencia, A new kind of singular stiff problems and application to thin elastic shells. Math. Models Methods Appl. Sci.5 (1995) 47–66.  Zbl0830.73039
  6. D. Caillerie and E. Sanchez-Palencia, Elastic thin shells: Asymptotic theory in the anisotropic and heterogeneous cases. Math. Models Methods Appl. Sci.5 (1995) 473–496.  Zbl0844.73043
  7. A. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization. C. R. Acad. Sci. Paris, Sér. I335 (2002) 99–104.  Zbl1001.49016
  8. D. Cioranescu and P. Donato, An introduction to homogenization. Oxford University Press (1999).  Zbl0939.35001
  9. D. Cioranescu and P. Donato, The periodic unfolding method in perforated domains,Portugaliae Mathematica, Vol. 63, Fasc. 4 (2006) 467–496.  Zbl1119.49014
  10. D. Cioranescu and J. Saint-Jean Paulin, Homogenization of reticulated structures. Springer-Verlag, New-York (1999).  Zbl0929.35002
  11. D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains. Porth. Math. N.S. 63 (2006) 467–496.  Zbl1119.49014
  12. E. Dieulesaint and D. Royer, Ondes élastiques dans les solides, application au traitement du signal. Masson, Paris (1974).  
  13. C. Haenel, Analyse et simulation numérique de coques piézoélectriques. Ph.D. thesis, Université Pierre et Marie Curie, France (2000).  
  14. T. Ikeda, Fundamentals of piezoelectricity. Oxford University Press (1990).  
  15. W.T. Koiter, On the foundations of the linear theory of thin elastic shell. Proc. Kon. Ned. Akad. Wetensch.B73 (1970) 169–195.  Zbl0213.27002
  16. T. Lewiński and J.J. Telega, Plates, laminates and shells. Asymptotic analysis and homogenization, Advances in Mathematics for Applied Sciences. World Scientific (2000).  Zbl0965.74003
  17. S. Luckhaus, A. Bourgeat and A. Mikelic, Convergence of the homogenization process for a double porosity model of immiscible two phase flow. SIAM J. Math. Anal.27 (1996) 1520–1543.  Zbl0866.35018
  18. H. Mechkour, Homogénéisation et simulation numérique de structures piézoeléctriques perforées et laminées. Ph.D. thesis, ESIEE-Paris (2004).  
  19. B. Miara, E. Rohan, M. Zidi and B. Labat, Piezomaterials for bone regeneration design. Homogenization approach. J. Mech. Phys. Solids53 (2005) 2529–2556.  Zbl1176.74125
  20. G. Nguetseng, A general convergence result for a functional related to the theory of homogenisation. SIAM J. Math. Anal.20 (1989) 608–623.  Zbl0688.35007
  21. A. Preumont, A. François and P. de Man, Spatial filtering with piezoelectric films via porous electrod design, in Proc. of 13th Int. Conf. on Adaptive Structures and Technologies, Berlin (2002).  
  22. J. Sanchez-Hubert and E. Sanchez-Palencia, Introduction aux méthodes asymptotiques et à l'homogénéisation. Application à la Mécanique des milieux continus. Masson, Paris (1992).  
  23. J. Sanchez-Hubert and E. Sanchez-Palencia, Coques élastiques minces. Propriétés asymptotiques. Masson, Paris (1997).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.