On pointwise adaptive curve estimation based on inhomogeneous data
ESAIM: Probability and Statistics (2007)
- Volume: 11, page 344-364
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. Antoniadis, G. Gregoire and P. Vial, Random design wavelet curve smoothing. Statist. Probab. Lett.35 (1997) 225–232.
- Y. Baraud, Model selection for regression on a random design. ESAIM Probab. Statist.6 (2002) 127–146 (electronic).
- N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation. Encyclopedia of Mathematics and its Applications, Cambridge University Press (1989).
- L. Brown and T. Cai, Wavelet shrinkage for nonequispaced samples. Ann. Statist.26 (1998) 1783–1799.
- L.D. Brown and M.G. Low, A constrained risk inequality with applications to nonparametric functional estimations. Ann. Statist.24 (1996) 2524–2535.
- T.T. Cai, M. Low and L.H. Zhao, Tradeoffs between global and local risks in nonparametric function estimation. Tech. rep., Wharton, University of Pennsylvania, (2004). URIhttp://stat.wharton.upenn.edu/~tcai/paper/html/Tradeoff.html
- V. Delouille, J. Simoens and R. Von Sachs, Smooth design-adapted wavelets for nonparametric stochastic regression. J. Amer. Statist. Soc.99 (2004) 643–658.
- J. Fan and I. Gijbels, Data-driven bandwidth selection in local polynomial fitting: variable bandwidth and spatial adaptation. J. Roy. Statist. Soc. Ser. B. Methodological57 (1995) 371–394.
- J. Fan and I. Gijbels, Local polynomial modelling and its applications. Monographs on Statistics and Applied Probability, Chapman & Hall, London (1996).
- S. Gaïffas, Convergence rates for pointwise curve estimation with a degenerate design. Mathematical Methods of Statistics1 (2005) 1–27. Available at URIhttp://hal.ccsd.cnrs.fr/ccsd-00003086/en/
- A. Goldenshluger and A. Nemirovski, On spatially adaptive estimation of nonparametric regression. Math. Methods Statist.6 (1997) 135–170.
- G. Kerkyacharian and D. Picard, Regression in random design and warped wavelets. Bernoulli, 10 (2004) 1053–1105.
- O.V. Lepski, Asymptotically minimax adaptive estimation i: Upper bounds, optimally adaptive estimates. Theory Probab. Applic.36 (1988) 682–697.
- O.V. Lepski, On a problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl., 35 (1990) 454–466.
- O.V. Lepski, E. Mammen and V.G. Spokoiny, Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors. Ann. Statist.25 (1997) 929–947.
- O.V. Lepski and V.G. Spokoiny, Optimal pointwise adaptive methods in nonparametric estimation. Ann. Statist.25 (1997) 2512–2546.
- V. Maxim, Restauration de signaux bruités sur des plans d'experience aléatoires. Ph.D. thesis, Université Joseph Fourier, Grenoble 1 (2003).
- V.G. Spokoiny, Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice. Ann. Statist.26 (1998) 1356–1378.
- C.J. Stone, Optimal rates of convergence for nonparametric estimators. Ann. Statist.8 (1980) 1348–1360.
- A. Tsybakov, Introduction à l'estimation non-paramétrique. Springer (2003).
- M.-Y. Wong and Z. Zheng, Wavelet threshold estimation of a regression function with random design. J. Multivariate Anal.80 (2002) 256–284.