Nonparametric regression estimation based on spatially inhomogeneous data: minimax global convergence rates and adaptivity
Anestis Antoniadis; Marianna Pensky; Theofanis Sapatinas
ESAIM: Probability and Statistics (2014)
- Volume: 18, page 1-41
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] U. Amato, A. Antoniadis and M. Pensky, Wavelet kernel penalized estimation for non-equispaced design regression. Statist. Comput.16 (2006) 37–55. MR2224188
- [2] A. Antoniadis and D.T. Pham, Wavelet regression for random or irregular design. Comput. Statist. Data Anal.28 (1998) 353–369. Zbl1042.62534MR1659207
- [3] N. Bissantz, L. Dumbgen, H. Holzmann and A. Munk, Nonparametric confidence bands in deconvolution density estimation. J. Royal Statist. Soc. Series B69 (2007) 483–506. MR2323764
- [4] L.D. Brown, T.T. Cai, M.G. Low and C.H. Zhang, Asymptotic equivalence theory for nonparametric regression with random design. Annal. Statist.30 (2002) 688–707. Zbl1029.62044MR1922538
- [5] T.T. Cai and L.D. Brown, Wavelet shrinkage for nonequispaced samples. Annal. Statist.26 (1998) 1783–1799. Zbl0929.62047MR1673278
- [6] C. Chesneau, Regression in random design: a minimax study. Statist. Probab. Lett.77 (2007) 40–53. Zbl1109.62028MR2339017
- [7] I. Daubechies, Ten Lectures on Wavelets. Philadelphia: SIAM (1992). Zbl0776.42018MR1162107
- [8] R.B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation. London: Academic Press (1973). Zbl0279.41030MR499926
- [9] S. Gaïffas,. Convergence rates for pointwise curve estimation with a degenerate design. Math. Meth. Statist. 14 (2005) 1–27. MR2158069
- [10] S. Gaïffas, Sharp estimation in sup norm with random design. Statist. Probab. Lett.77 (2006) 782–794. Zbl1114.62046MR2369683
- [11] S. Gaïffas, On pointwise adaptive curve estimation based on inhomogeneous data. ESAIM: Probab. Statist. 11 (2007) 344–364. Zbl1187.62074MR2339297
- [12] S. Gaïffas, Uniform estimation of a signal based on inhomogeneous data. Statistica Sinica19 (2009) 427–447. Zbl1168.62036MR2514170
- [13] E. Giné and R. Nickl, Confidence bands in density estimation. Annal. Statist.38 (2010) 1122–1170. Zbl1183.62062MR2604707
- [14] A. Guillou and N. Klutchnikoff, Minimax pointwise estimation of an anisotropic regression function with unknown density of the design. Math. Methods Statist.20 (2011) 30–57. Zbl1282.62076MR2811030
- [15] P. Hall and B.A. Turlach, Interpolation methods for nonlinear wavelet regression with irregularly spaced design. Annal. Statist.25 (1997) 1912–1925. Zbl0881.62044MR1474074
- [16] W. Härdle, G. Kerkyacharian, D. Picard and A. Tsybakov, Wavelets, Approximation, and Statistical Applications, vol. 129 of Lect. Notes Statist. Springer-Verlag, New York (1998). Zbl0899.62002MR1618204
- [17] M. Hoffmann and M. Reiss, Nonlinear estimation for linear inverse problems with error in the operator. Annal. Statist.36 (2008) 310–336. Zbl1134.65038MR2387973
- [18] I.M. Johnstone, Minimax Bayes, asymptotic minimax and sparse wavelet priors, in Statistical Decision Theory and Related Topics, edited by S.S. Gupta and J.O. Berger. Springer-Verlag, New York (1994) 303–326, Zbl0815.62017MR1286310
- [19] I.M. Johnstone, Function Estimation and Gaussian Sequence Models. Unpublished Monograph (2002). http://statweb.stanford.edu/~imj/
- [20] I.M. Johnstone, G. Kerkyacharian, D. Picard and M. Raimondo, Wavelet deconvolution in a periodic setting. J. Royal Statist. Soc. Series B 66 (2004) 547-573 (with discussion, 627--657). Zbl1046.62039MR2088290
- [21] G. Kerkyacharian and D. Picard, Regression in random design and warped wavelets. Bernoulli10 (2004) 1053-1105. Zbl1067.62039MR2108043
- [22] M. Kohler, Nonlinear orthogonal series estimation for random design regression. J. Statist. Plann. Inference115 (2003) 491-520. Zbl1016.62040MR1985881
- [23] A.P. Korostelev and A.B. Tsybakov, Minimax Theory of Image Reconstruction, vol. 82 of Lect. Notes Statist. Springer-Verlag, New York (1993). Zbl0833.62039MR1226450
- [24] A. Kovac and B.W. Silverman, Extending the scope of wavelet regression methods by coefficient-dependent thresholding. J. Amer. Statist. Assoc.95 (2000) 172-183.
- [25] R. Kulik and M. Raimondo, Wavelet regression in random design with heteroscedastic dependent errors. Annal. Statist.37 (2009) 3396-3430. Zbl05644284MR2549564
- [26] O.V. Lepski, A problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl.35 (1990) 454-466. Zbl0745.62083MR1091202
- [27] O.V. Lepski, Asymptotically minimax adaptive estimation I: Upper bounds. Optimally adaptive estimators. Theory Probab. Appl. 36 (1991) 682-697. Zbl0776.62039MR1147167
- [28] O.V. Lepski, E. Mammen and V.G. Spokoiny, Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors Annal. Statist.25 (1997) 929-947. Zbl0885.62044MR1447734
- [29] O. Lepski and V. Spokoiny, Optimal pointwise adaptive methods in nonparametric estimation. Annal. Statist.25 (1997) 2512-2546. Zbl0894.62041MR1604408
- [30] S. Mallat, A Wavelet Tour of Signal Processing. 2nd Edition, Academic Press, San Diego (1999). Zbl1170.94003MR2479996
- [31] Y. Meyer, Wavelets and Operators. Cambridge: Cambridge University Press (1992). Zbl0776.42019MR1228209
- [32] M. Pensky and T. Sapatinas, Functional deconvolution in a periodic case: uniform case. Annal. Statist.37 (2009) 73-104. Zbl1274.62253MR2488345
- [33] M. Pensky and T. Sapatinas, On convergence rates equivalency and sampling strategies in functional deconvolution models. Annal. Statist.38 (2010) 1793-1844. Zbl05712439MR2662360
- [34] M. Pensky and B. Vidakovic, On non-equally spaced wavelet regression. Annal. Instit. Statist. Math.53 (2001) 681-690. Zbl1003.62037MR1879604
- [35] S. Sardy, D.B. Percival, A.G. Bruce, H.-Y. Gao and W. Stuelzle, Wavelet shrinkage for unequally spaced data. Statist. Comput.9 (1999) 65-75.
- [36] K. Tribouley, Adaptive simultaneous confidence intervals in non-parametric estimation. Statist. Probab. Lett.69 (2004) 37-51. Zbl1116.62346MR2087668
- [37] A.B. Tsybakov, Introduction to Nonparametric Estimation. Springer-Verlag, New York (2009). Zbl1029.62034MR2724359
- [38] G. Wahba, Spline Models for Observational Data. SIAM, Philadelphia (1990). Zbl0813.62001MR1045442
- [39] S. Zhang, M.-Y. Wong and Z. Zheng, Wavelet threshold estimation of a regression function with random design. J. Multivariate Anal.80 (2002) 256-284. Zbl1003.62040MR1889776