Infinite system of Brownian balls with interaction: the non-reversible case
ESAIM: Probability and Statistics (2007)
- Volume: 11, page 55-79
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- R.L. Dobrushin, Gibbsian random fields. The general case. Functional Anal. Appl.3 (1969) 22–28.
- M. Fradon and S. Rœlly, Infinite dimensional diffusion processes with singular interaction. Bull. Sci. math. 124 (2000) 287–318.
- J. Fritz, Gradient Dynamics of Infinite Points Systems. Ann Probab.15 (1987) 478–514.
- H.-O. Georgii, Canonical Gibbs measures. Lecture Notes in Mathematics 760, Springer-Verlag, Berlin (1979).
- R. Lang, Unendlich-dimensionale Wienerprozesse mit Wechselwirkung. Z. Wahrsch. Verw. Geb.38 (1977) 55–72.
- D. Ruelle, Superstable Interactions in Classical Statistical Mechanics. Comm. Math. Phys.18 (1970) 127–159.
- Y. Saisho and H. Tanaka, Stochastic Differential Equations for Mutually Reflecting Brownian Balls. Osaka J. Math. 23 (1986) 725–740.
- H. Tanemura, A System of Infinitely Many Mutually Reflecting Brownian Balls. Probability Theory and Related Fields104 (1996) 399–426.