A property of Wallach's flag manifolds
Archivum Mathematicum (2007)
- Volume: 043, Issue: 5, page 307-319
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topArias-Marco, Teresa. "A property of Wallach's flag manifolds." Archivum Mathematicum 043.5 (2007): 307-319. <http://eudml.org/doc/250156>.
@article{Arias2007,
abstract = {In this note we study the Ledger conditions on the families of flag manifold $(M^\{6\}=SU(3)/SU(1)\times SU(1) \times SU(1), g_\{(c_1,c_2,c_3)\})$, $\big (M^\{12\}=Sp(3)/SU(2) \times SU(2) \times SU(2), g_\{(c_1,c_2,c_3)\}\big )$, constructed by N. R. Wallach in (Wallach, N. R., Compact homogeneous Riemannian manifols with strictly positive curvature, Ann. of Math. 96 (1972), 276–293.). In both cases, we conclude that every member of the both families of Riemannian flag manifolds is a D’Atri space if and only if it is naturally reductive. Therefore, we finish the study of $M^6$ made by D’Atri and Nickerson in (D’Atri, J. E., Nickerson, H. K., Geodesic symmetries in spaces with special curvature tensors, J. Differenatial Geom. 9 (1974), 251–262.). Moreover, we correct and improve the result given by the author and A. M. Naveira in (Arias-Marco, T., Naveira, A. M., A note on a family of reductive Riemannian homogeneous spaces whose geodesic symmetries fail to be divergence-preserving, Proceedings of the XI Fall Workshop on Geometry and Physics. Publicaciones de la RSME 6 (2004), 35–45.) about $M^\{12\}$.},
author = {Arias-Marco, Teresa},
journal = {Archivum Mathematicum},
keywords = {Riemannian manifold; naturally reductive Riemannian homogeneous space; D’Atri space; flag manifold; Riemannian manifold; naturally reductive Riemannian homogeneous space; D'Atri space; flag manifold},
language = {eng},
number = {5},
pages = {307-319},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A property of Wallach's flag manifolds},
url = {http://eudml.org/doc/250156},
volume = {043},
year = {2007},
}
TY - JOUR
AU - Arias-Marco, Teresa
TI - A property of Wallach's flag manifolds
JO - Archivum Mathematicum
PY - 2007
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 043
IS - 5
SP - 307
EP - 319
AB - In this note we study the Ledger conditions on the families of flag manifold $(M^{6}=SU(3)/SU(1)\times SU(1) \times SU(1), g_{(c_1,c_2,c_3)})$, $\big (M^{12}=Sp(3)/SU(2) \times SU(2) \times SU(2), g_{(c_1,c_2,c_3)}\big )$, constructed by N. R. Wallach in (Wallach, N. R., Compact homogeneous Riemannian manifols with strictly positive curvature, Ann. of Math. 96 (1972), 276–293.). In both cases, we conclude that every member of the both families of Riemannian flag manifolds is a D’Atri space if and only if it is naturally reductive. Therefore, we finish the study of $M^6$ made by D’Atri and Nickerson in (D’Atri, J. E., Nickerson, H. K., Geodesic symmetries in spaces with special curvature tensors, J. Differenatial Geom. 9 (1974), 251–262.). Moreover, we correct and improve the result given by the author and A. M. Naveira in (Arias-Marco, T., Naveira, A. M., A note on a family of reductive Riemannian homogeneous spaces whose geodesic symmetries fail to be divergence-preserving, Proceedings of the XI Fall Workshop on Geometry and Physics. Publicaciones de la RSME 6 (2004), 35–45.) about $M^{12}$.
LA - eng
KW - Riemannian manifold; naturally reductive Riemannian homogeneous space; D’Atri space; flag manifold; Riemannian manifold; naturally reductive Riemannian homogeneous space; D'Atri space; flag manifold
UR - http://eudml.org/doc/250156
ER -
References
top- Arias-Marco T., The classification of 4-dimensional homogeneous D’Atri spaces revisited, Differential Geometry and its Applications 25 (2007), 29–34. Zbl1121.53026MR2293639
- Arias-Marco T., Kowalski O., The classification of 4-dimensional homogeneous D’Atri spaces, to appear in Czechoslovak Math. J. MR2402535
- Arias-Marco T., Naveira A. M., A note on a family of reductive Riemannian homogeneous spaces whose geodesic symmetries fail to be divergence-preserving, Proceedings of the XI Fall Workshop on Geometry and Physics. Publicaciones de la RSME 6 (2004), 35–45. Zbl1063.53042
- Bueken P., Vanhecke L., Three- and Four-dimensional Einstein-like manifolds and homogeneity, Geom. Dedicata 75 (1999), 123–136. (1999) Zbl0944.53026MR1686754
- D’Atri J. E., Geodesic spheres and symmetries in naturally reductive homogeneous spaces, Michigan Math. J. 22 (1975), 71–76. (1975) MR0372786
- D’Atri J. E., Nickerson H. K., Divergence preserving geodesic symmetries, J. Differential Geom. 3 (1969), 467–476. (1969) Zbl0195.23604MR0262969
- D’Atri J. E., Nickerson H. K., Geodesic symmetries in spaces with special curvature tensors, J. Differenatial Geom. 9 (1974), 251–262. (1974) Zbl0285.53019MR0394520
- Gray A., Hervella L. M., The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123(4) (1980), 35–58. (1980) Zbl0444.53032MR0581924
- Kobayashi S., Nomizu K., Foundations of Differential Geometry, Vols. I and II, Interscience, New York, 1963 and 1969. (1963) MR0152974
- Kowalski O., Spaces with volume-preserving symmetries and related classes of Riemannian manifolds, Rend. Sem. Mat. Univ. Politec. Torino, Fascicolo Speciale, (1983), 131–158. (1983) Zbl0631.53033MR0829002
- Kowalski O., Prüfer F., Vanhecke L., D’Atri Spaces, Progr. Nonlinear Differential Equations Appl. 20 (1996), 241–284. (1996) Zbl0862.53039MR1390318
- Podestà F., Spiro A., Four-dimensional Einstein-like manifolds and curvature homogeneity, Geom. Dedicata 54 (1995), 225–243. (1995) Zbl0835.53056MR1326728
- Szabó Z. I., Spectral theory for operator families on Riemannian manifolds, Proc. Sympos. Pure Math. 54(3) (1993), 615–665. (1993) MR1216651
- Wallach N. R., Compact homogeneous Riemannian manifols with strictly positive curvature, Ann. of Math. 96 (1972), 276–293. (1972) MR0307122
- Wolf J., Gray A., Homogeneous spaces defined by Lie group automorphisms, I, J. Differential Geom. 2 (1968), 77–114, 115–159. (1968) Zbl0169.24103MR0236328
- Wolf J., Gray A., Homogeneous spaces defined by Lie group automorphisms, II, J. Differential Geom. 2 (1968), 115–159. (1968) Zbl0182.24702MR0236329
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.