A property of Wallach's flag manifolds

Teresa Arias-Marco

Archivum Mathematicum (2007)

  • Volume: 043, Issue: 5, page 307-319
  • ISSN: 0044-8753

Abstract

top
In this note we study the Ledger conditions on the families of flag manifold ( M 6 = S U ( 3 ) / S U ( 1 ) × S U ( 1 ) × S U ( 1 ) , g ( c 1 , c 2 , c 3 ) ) , ( M 12 = S p ( 3 ) / S U ( 2 ) × S U ( 2 ) × S U ( 2 ) , g ( c 1 , c 2 , c 3 ) ) , constructed by N. R. Wallach in (Wallach, N. R., Compact homogeneous Riemannian manifols with strictly positive curvature, Ann. of Math. 96 (1972), 276–293.). In both cases, we conclude that every member of the both families of Riemannian flag manifolds is a D’Atri space if and only if it is naturally reductive. Therefore, we finish the study of M 6 made by D’Atri and Nickerson in (D’Atri, J. E., Nickerson, H. K., Geodesic symmetries in spaces with special curvature tensors, J. Differenatial Geom. 9 (1974), 251–262.). Moreover, we correct and improve the result given by the author and A. M. Naveira in (Arias-Marco, T., Naveira, A. M., A note on a family of reductive Riemannian homogeneous spaces whose geodesic symmetries fail to be divergence-preserving, Proceedings of the XI Fall Workshop on Geometry and Physics. Publicaciones de la RSME 6 (2004), 35–45.) about M 12 .

How to cite

top

Arias-Marco, Teresa. "A property of Wallach's flag manifolds." Archivum Mathematicum 043.5 (2007): 307-319. <http://eudml.org/doc/250156>.

@article{Arias2007,
abstract = {In this note we study the Ledger conditions on the families of flag manifold $(M^\{6\}=SU(3)/SU(1)\times SU(1) \times SU(1), g_\{(c_1,c_2,c_3)\})$, $\big (M^\{12\}=Sp(3)/SU(2) \times SU(2) \times SU(2), g_\{(c_1,c_2,c_3)\}\big )$, constructed by N. R. Wallach in (Wallach, N. R., Compact homogeneous Riemannian manifols with strictly positive curvature, Ann. of Math. 96 (1972), 276–293.). In both cases, we conclude that every member of the both families of Riemannian flag manifolds is a D’Atri space if and only if it is naturally reductive. Therefore, we finish the study of $M^6$ made by D’Atri and Nickerson in (D’Atri, J. E., Nickerson, H. K., Geodesic symmetries in spaces with special curvature tensors, J. Differenatial Geom. 9 (1974), 251–262.). Moreover, we correct and improve the result given by the author and A. M. Naveira in (Arias-Marco, T., Naveira, A. M., A note on a family of reductive Riemannian homogeneous spaces whose geodesic symmetries fail to be divergence-preserving, Proceedings of the XI Fall Workshop on Geometry and Physics. Publicaciones de la RSME 6 (2004), 35–45.) about $M^\{12\}$.},
author = {Arias-Marco, Teresa},
journal = {Archivum Mathematicum},
keywords = {Riemannian manifold; naturally reductive Riemannian homogeneous space; D’Atri space; flag manifold; Riemannian manifold; naturally reductive Riemannian homogeneous space; D'Atri space; flag manifold},
language = {eng},
number = {5},
pages = {307-319},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A property of Wallach's flag manifolds},
url = {http://eudml.org/doc/250156},
volume = {043},
year = {2007},
}

TY - JOUR
AU - Arias-Marco, Teresa
TI - A property of Wallach's flag manifolds
JO - Archivum Mathematicum
PY - 2007
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 043
IS - 5
SP - 307
EP - 319
AB - In this note we study the Ledger conditions on the families of flag manifold $(M^{6}=SU(3)/SU(1)\times SU(1) \times SU(1), g_{(c_1,c_2,c_3)})$, $\big (M^{12}=Sp(3)/SU(2) \times SU(2) \times SU(2), g_{(c_1,c_2,c_3)}\big )$, constructed by N. R. Wallach in (Wallach, N. R., Compact homogeneous Riemannian manifols with strictly positive curvature, Ann. of Math. 96 (1972), 276–293.). In both cases, we conclude that every member of the both families of Riemannian flag manifolds is a D’Atri space if and only if it is naturally reductive. Therefore, we finish the study of $M^6$ made by D’Atri and Nickerson in (D’Atri, J. E., Nickerson, H. K., Geodesic symmetries in spaces with special curvature tensors, J. Differenatial Geom. 9 (1974), 251–262.). Moreover, we correct and improve the result given by the author and A. M. Naveira in (Arias-Marco, T., Naveira, A. M., A note on a family of reductive Riemannian homogeneous spaces whose geodesic symmetries fail to be divergence-preserving, Proceedings of the XI Fall Workshop on Geometry and Physics. Publicaciones de la RSME 6 (2004), 35–45.) about $M^{12}$.
LA - eng
KW - Riemannian manifold; naturally reductive Riemannian homogeneous space; D’Atri space; flag manifold; Riemannian manifold; naturally reductive Riemannian homogeneous space; D'Atri space; flag manifold
UR - http://eudml.org/doc/250156
ER -

References

top
  1. Arias-Marco T., The classification of 4-dimensional homogeneous D’Atri spaces revisited, Differential Geometry and its Applications 25 (2007), 29–34. Zbl1121.53026MR2293639
  2. Arias-Marco T., Kowalski O., The classification of 4-dimensional homogeneous D’Atri spaces, to appear in Czechoslovak Math. J. MR2402535
  3. Arias-Marco T., Naveira A. M., A note on a family of reductive Riemannian homogeneous spaces whose geodesic symmetries fail to be divergence-preserving, Proceedings of the XI Fall Workshop on Geometry and Physics. Publicaciones de la RSME 6 (2004), 35–45. Zbl1063.53042
  4. Bueken P., Vanhecke L., Three- and Four-dimensional Einstein-like manifolds and homogeneity, Geom. Dedicata 75 (1999), 123–136. (1999) Zbl0944.53026MR1686754
  5. D’Atri J. E., Geodesic spheres and symmetries in naturally reductive homogeneous spaces, Michigan Math. J. 22 (1975), 71–76. (1975) MR0372786
  6. D’Atri J. E., Nickerson H. K., Divergence preserving geodesic symmetries, J. Differential Geom. 3 (1969), 467–476. (1969) Zbl0195.23604MR0262969
  7. D’Atri J. E., Nickerson H. K., Geodesic symmetries in spaces with special curvature tensors, J. Differenatial Geom. 9 (1974), 251–262. (1974) Zbl0285.53019MR0394520
  8. Gray A., Hervella L. M., The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123(4) (1980), 35–58. (1980) Zbl0444.53032MR0581924
  9. Kobayashi S., Nomizu K., Foundations of Differential Geometry, Vols. I and II, Interscience, New York, 1963 and 1969. (1963) MR0152974
  10. Kowalski O., Spaces with volume-preserving symmetries and related classes of Riemannian manifolds, Rend. Sem. Mat. Univ. Politec. Torino, Fascicolo Speciale, (1983), 131–158. (1983) Zbl0631.53033MR0829002
  11. Kowalski O., Prüfer F., Vanhecke L., D’Atri Spaces, Progr. Nonlinear Differential Equations Appl. 20 (1996), 241–284. (1996) Zbl0862.53039MR1390318
  12. Podestà F., Spiro A., Four-dimensional Einstein-like manifolds and curvature homogeneity, Geom. Dedicata 54 (1995), 225–243. (1995) Zbl0835.53056MR1326728
  13. Szabó Z. I., Spectral theory for operator families on Riemannian manifolds, Proc. Sympos. Pure Math. 54(3) (1993), 615–665. (1993) MR1216651
  14. Wallach N. R., Compact homogeneous Riemannian manifols with strictly positive curvature, Ann. of Math. 96 (1972), 276–293. (1972) MR0307122
  15. Wolf J., Gray A., Homogeneous spaces defined by Lie group automorphisms, I, J. Differential Geom. 2 (1968), 77–114, 115–159. (1968) Zbl0169.24103MR0236328
  16. Wolf J., Gray A., Homogeneous spaces defined by Lie group automorphisms, II, J. Differential Geom. 2 (1968), 115–159. (1968) Zbl0182.24702MR0236329

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.