-supplemented modules and -weakly supplemented modules
Archivum Mathematicum (2007)
- Volume: 043, Issue: 4, page 251-257
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKoşan, Muhammet Tamer. "$\tau $-supplemented modules and $\tau $-weakly supplemented modules." Archivum Mathematicum 043.4 (2007): 251-257. <http://eudml.org/doc/250161>.
@article{Koşan2007,
abstract = {Given a hereditary torsion theory $\tau = (\mathbb \{T\},\mathbb \{F\})$ in Mod-$R$, a module $M$ is called $\tau $-supplemented if every submodule $A$ of $M$ contains a direct summand $C$ of $M$ with $A/C$$\tau -$torsion. A submodule $V$ of $M$ is called $\tau $-supplement of $U$ in $M$ if $U+V=M$ and $U\cap V\le \tau (V)$ and $M$ is $\tau $-weakly supplemented if every submodule of $M$ has a $\tau $-supplement in $M$. Let $M$ be a $\tau $-weakly supplemented module. Then $M$ has a decomposition $M=M_1\oplus M_2$ where $M_1$ is a semisimple module and $M_2$ is a module with $\tau (M_2)\le _e M_2$. Also, it is shown that; any finite sum of $\tau $-weakly supplemented modules is a $\tau $-weakly supplemented module.},
author = {Koşan, Muhammet Tamer},
journal = {Archivum Mathematicum},
keywords = {torsion theory; $\tau $-supplement submodule; hereditary torsion theories; direct summands; weakly supplemented modules},
language = {eng},
number = {4},
pages = {251-257},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {$\tau $-supplemented modules and $\tau $-weakly supplemented modules},
url = {http://eudml.org/doc/250161},
volume = {043},
year = {2007},
}
TY - JOUR
AU - Koşan, Muhammet Tamer
TI - $\tau $-supplemented modules and $\tau $-weakly supplemented modules
JO - Archivum Mathematicum
PY - 2007
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 043
IS - 4
SP - 251
EP - 257
AB - Given a hereditary torsion theory $\tau = (\mathbb {T},\mathbb {F})$ in Mod-$R$, a module $M$ is called $\tau $-supplemented if every submodule $A$ of $M$ contains a direct summand $C$ of $M$ with $A/C$$\tau -$torsion. A submodule $V$ of $M$ is called $\tau $-supplement of $U$ in $M$ if $U+V=M$ and $U\cap V\le \tau (V)$ and $M$ is $\tau $-weakly supplemented if every submodule of $M$ has a $\tau $-supplement in $M$. Let $M$ be a $\tau $-weakly supplemented module. Then $M$ has a decomposition $M=M_1\oplus M_2$ where $M_1$ is a semisimple module and $M_2$ is a module with $\tau (M_2)\le _e M_2$. Also, it is shown that; any finite sum of $\tau $-weakly supplemented modules is a $\tau $-weakly supplemented module.
LA - eng
KW - torsion theory; $\tau $-supplement submodule; hereditary torsion theories; direct summands; weakly supplemented modules
UR - http://eudml.org/doc/250161
ER -
References
top- Anderson F. W., Fuller K. R., Rings and Categories of Modules, Springer-Verlag, New York, 1992. (1992) Zbl0765.16001MR1245487
- Clark J., Lomp C., Vanaja N., Wisbauer R., Lifting Modules, Birkhäuser, Basel, 2006. Zbl1102.16001MR2253001
- Golan J. S., Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Mathematics 29, New York, John Wiley & Sons, 1986. (1986) Zbl0657.16017MR0880019
- Koşan T., Harmanci A., Modules supplemented with respect to a torsion theory, Turkish J. Math. 28 (2), (2004), 177–184. MR2062562
- Koşan M. T., Harmanci A., Decompositions of Modules supplemented with respect to a torsion theory, Internat. J. Math. 16 (1), (2005), 43–52. MR2115677
- Koşan M. T., Harmanci A., -supplemented modules relative to a torsion theory, New-Zealand J. Math. 35 (2006), 63–75. Zbl1104.16026MR2222176
- Mohamed S. H., Müller B. J., Continuous and discrete modules, London Math. Soc. LNS 147, Cambridge Univ. Press, Cambridge (1990). (1990) Zbl0701.16001MR1084376
- Smith P. F., Viola-Prioli A. M., and Viola-Prioli J., Modules complemented with respect to a torsion theory, Comm. Algebra 25 (1997), 1307–1326. (1997) MR1437673
- Stenström B., Rings of quotients, Springer Verlag, Berlin, 1975. (1975) MR0389953
- Wisbauer R., Foundations of module and ring theory, Gordon and Breach, Reading, 1991. (1991) Zbl0746.16001MR1144522
- Zhou Y., Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloquium 7 (3), (2000), 305–318. Zbl0994.16016MR1810586
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.