Eberlein spaces of finite metrizability number

István Juhász; Zoltán Szentmiklóssy; Andrzej Szymański

Commentationes Mathematicae Universitatis Carolinae (2007)

  • Volume: 48, Issue: 2, page 291-301
  • ISSN: 0010-2628

Abstract

top
Yakovlev [On bicompacta in Σ -products and related spaces, Comment. Math. Univ. Carolin. 21.2 (1980), 263–283] showed that any Eberlein compactum is hereditarily σ -metacompact. We show that this property actually characterizes Eberlein compacta among compact spaces of finite metrizability number. Uniformly Eberlein compacta and Corson compacta of finite metrizability number can be characterized in an analogous way.

How to cite

top

Juhász, István, Szentmiklóssy, Zoltán, and Szymański, Andrzej. "Eberlein spaces of finite metrizability number." Commentationes Mathematicae Universitatis Carolinae 48.2 (2007): 291-301. <http://eudml.org/doc/250186>.

@article{Juhász2007,
abstract = {Yakovlev [On bicompacta in $\Sigma $-products and related spaces, Comment. Math. Univ. Carolin. 21.2 (1980), 263–283] showed that any Eberlein compactum is hereditarily $\sigma $-metacompact. We show that this property actually characterizes Eberlein compacta among compact spaces of finite metrizability number. Uniformly Eberlein compacta and Corson compacta of finite metrizability number can be characterized in an analogous way.},
author = {Juhász, István, Szentmiklóssy, Zoltán, Szymański, Andrzej},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {metrizability number; Eberlein compactum; separating family; metrizability number; Eberlein compactum; separating family},
language = {eng},
number = {2},
pages = {291-301},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Eberlein spaces of finite metrizability number},
url = {http://eudml.org/doc/250186},
volume = {48},
year = {2007},
}

TY - JOUR
AU - Juhász, István
AU - Szentmiklóssy, Zoltán
AU - Szymański, Andrzej
TI - Eberlein spaces of finite metrizability number
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 2
SP - 291
EP - 301
AB - Yakovlev [On bicompacta in $\Sigma $-products and related spaces, Comment. Math. Univ. Carolin. 21.2 (1980), 263–283] showed that any Eberlein compactum is hereditarily $\sigma $-metacompact. We show that this property actually characterizes Eberlein compacta among compact spaces of finite metrizability number. Uniformly Eberlein compacta and Corson compacta of finite metrizability number can be characterized in an analogous way.
LA - eng
KW - metrizability number; Eberlein compactum; separating family; metrizability number; Eberlein compactum; separating family
UR - http://eudml.org/doc/250186
ER -

References

top
  1. Amir D., Lindenstrauss J., The structure of weakly compact sets in Banach spaces, Ann. of Math. 88 (1968), 35-46. (1968) Zbl0164.14903MR0228983
  2. Benyamini Y., Rudin M.E., Wage M., Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math. 70.2 (1977), 309-324. (1977) Zbl0374.46011MR0625889
  3. Benyamini Y., Starbird T., Embedding weakly compact sets into Hilbert space, Israel J. Math. 23 (1976), 137-141. (1976) Zbl0325.46023MR0397372
  4. Engelking R., General Topology, Heldermann Verlag, Berlin, 1988. Zbl0684.54001MR1039321
  5. Gruenhage G., Covering properties on X 2 Δ , W -sets, and compact subsets of Σ -products, Topology Appl. 17 (1984), 287-304. (1984) Zbl0547.54016MR0752278
  6. Ismail M., Szymanski A., On locally compact Hausdorff spaces with finite metrizability number, Topology Appl. 114.3 (2001), 285-293. (2001) Zbl1012.54002MR1838327
  7. Juhász I., Cardinal Functions in Topology - Ten Years After, Mathematical Centre Tracts 123, Amsterdam, 1983. MR0576927
  8. Lindenstrauss J., Weakly compact sets, their topological properties and the Banach spaces they generate, Annals of Math. Studies 69, Princeton University Press, Princeton, 1972, pp.235-273. Zbl0232.46019MR0417761
  9. Michael E., Rudin M.E., A note on Eberlein compacts, Pacific J. Math. 72.2 (1977), 487-495. (1977) Zbl0345.54020MR0478092
  10. Michael E., Rudin M.E., Another note on Eberlein compacts, Pacific J. Math. 72.2 (1977), 497-499. (1977) Zbl0344.54018MR0478093
  11. Rosenthal H.P., The heredity problem for weakly compactly generated Banach spaces, Compositio Math. 28 (1974), 83-111. (1974) Zbl0298.46013MR0417762
  12. Yakovlev N.N., On bicompacta in Σ -products and related spaces, Comment. Math. Univ. Carolin. 21.2 (1980), 263-283. (1980) Zbl0436.54019MR0580682

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.