top
Yakovlev [On bicompacta in -products and related spaces, Comment. Math. Univ. Carolin. 21.2 (1980), 263–283] showed that any Eberlein compactum is hereditarily -metacompact. We show that this property actually characterizes Eberlein compacta among compact spaces of finite metrizability number. Uniformly Eberlein compacta and Corson compacta of finite metrizability number can be characterized in an analogous way.
Juhász, István, Szentmiklóssy, Zoltán, and Szymański, Andrzej. "Eberlein spaces of finite metrizability number." Commentationes Mathematicae Universitatis Carolinae 48.2 (2007): 291-301. <http://eudml.org/doc/250186>.
@article{Juhász2007, abstract = {Yakovlev [On bicompacta in $\Sigma $-products and related spaces, Comment. Math. Univ. Carolin. 21.2 (1980), 263–283] showed that any Eberlein compactum is hereditarily $\sigma $-metacompact. We show that this property actually characterizes Eberlein compacta among compact spaces of finite metrizability number. Uniformly Eberlein compacta and Corson compacta of finite metrizability number can be characterized in an analogous way.}, author = {Juhász, István, Szentmiklóssy, Zoltán, Szymański, Andrzej}, journal = {Commentationes Mathematicae Universitatis Carolinae}, keywords = {metrizability number; Eberlein compactum; separating family; metrizability number; Eberlein compactum; separating family}, language = {eng}, number = {2}, pages = {291-301}, publisher = {Charles University in Prague, Faculty of Mathematics and Physics}, title = {Eberlein spaces of finite metrizability number}, url = {http://eudml.org/doc/250186}, volume = {48}, year = {2007}, }
TY - JOUR AU - Juhász, István AU - Szentmiklóssy, Zoltán AU - Szymański, Andrzej TI - Eberlein spaces of finite metrizability number JO - Commentationes Mathematicae Universitatis Carolinae PY - 2007 PB - Charles University in Prague, Faculty of Mathematics and Physics VL - 48 IS - 2 SP - 291 EP - 301 AB - Yakovlev [On bicompacta in $\Sigma $-products and related spaces, Comment. Math. Univ. Carolin. 21.2 (1980), 263–283] showed that any Eberlein compactum is hereditarily $\sigma $-metacompact. We show that this property actually characterizes Eberlein compacta among compact spaces of finite metrizability number. Uniformly Eberlein compacta and Corson compacta of finite metrizability number can be characterized in an analogous way. LA - eng KW - metrizability number; Eberlein compactum; separating family; metrizability number; Eberlein compactum; separating family UR - http://eudml.org/doc/250186 ER -
Gruenhage G., Covering properties on , -sets, and compact subsets of -products, Topology Appl. 17 (1984), 287-304. (1984) Zbl0547.54016MR0752278
Ismail M., Szymanski A., On locally compact Hausdorff spaces with finite metrizability number, Topology Appl. 114.3 (2001), 285-293. (2001) Zbl1012.54002MR1838327
Juhász I., Cardinal Functions in Topology - Ten Years After, Mathematical Centre Tracts 123, Amsterdam, 1983. MR0576927
Lindenstrauss J., Weakly compact sets, their topological properties and the Banach spaces they generate, Annals of Math. Studies 69, Princeton University Press, Princeton, 1972, pp.235-273. Zbl0232.46019MR0417761
Michael E., Rudin M.E., A note on Eberlein compacts, Pacific J. Math. 72.2 (1977), 487-495. (1977) Zbl0345.54020MR0478092
Michael E., Rudin M.E., Another note on Eberlein compacts, Pacific J. Math. 72.2 (1977), 497-499. (1977) Zbl0344.54018MR0478093