Non-existence result for quasi-linear elliptic equations with supercritical growth

Zuo Dong Yang; Junli Yuan

Commentationes Mathematicae Universitatis Carolinae (2007)

  • Volume: 48, Issue: 3, page 417-430
  • ISSN: 0010-2628

Abstract

top
We obtain a non-existence result for a class of quasi-linear eigenvalue problems when a parameter is small. By using Pohozaev identity and some comparison arguments, non-existence theorems are established for quasi-linear eigenvalue problems under supercritical growth condition.

How to cite

top

Yang, Zuo Dong, and Yuan, Junli. "Non-existence result for quasi-linear elliptic equations with supercritical growth." Commentationes Mathematicae Universitatis Carolinae 48.3 (2007): 417-430. <http://eudml.org/doc/250202>.

@article{Yang2007,
abstract = {We obtain a non-existence result for a class of quasi-linear eigenvalue problems when a parameter is small. By using Pohozaev identity and some comparison arguments, non-existence theorems are established for quasi-linear eigenvalue problems under supercritical growth condition.},
author = {Yang, Zuo Dong, Yuan, Junli},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {quasi-linear elliptic equations; non-existence; large solution; small solution; quasi-linear elliptic equations; non-existence; large solution; small solution},
language = {eng},
number = {3},
pages = {417-430},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Non-existence result for quasi-linear elliptic equations with supercritical growth},
url = {http://eudml.org/doc/250202},
volume = {48},
year = {2007},
}

TY - JOUR
AU - Yang, Zuo Dong
AU - Yuan, Junli
TI - Non-existence result for quasi-linear elliptic equations with supercritical growth
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 3
SP - 417
EP - 430
AB - We obtain a non-existence result for a class of quasi-linear eigenvalue problems when a parameter is small. By using Pohozaev identity and some comparison arguments, non-existence theorems are established for quasi-linear eigenvalue problems under supercritical growth condition.
LA - eng
KW - quasi-linear elliptic equations; non-existence; large solution; small solution; quasi-linear elliptic equations; non-existence; large solution; small solution
UR - http://eudml.org/doc/250202
ER -

References

top
  1. Astarita G., Marrucci G., Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, 1974. 
  2. Martinson L.K., Pavlov K.B., Unsteady shear flows of a conducting fluid with a rheological power law, Magnitnaya Gidrodinamika 2 (1971), 50-58. (1971) 
  3. Kalashnikov A.S., On a nonlinear equation arising in the theory of nonlinear filtration (in Russian), Trudy Sem. Petrovsk. 4 (1978), 137-146. (1978) MR0524529
  4. Esteban J.R., Vazquez J.L., On the equation of turbulent filtration in one-dimensional porous media, Nonlinear Anal. 10 (1982), 1303-1325. (1982) MR0866262
  5. Ni W.M., Serrin J., Nonexistence theorems for singular solutions of quasilinear partial differential equations, Comm. Pure Appl. Math. 39 (1986), 379-399. (1986) Zbl0602.35031MR0829846
  6. Gelfand I.M., Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl. Ser. 2 29 (1963), 295-381. (1963) MR0153960
  7. Keller H.B., Cohen D.S., Some positone problems suggested by nonlinear heat generation, J. Math. Mech. 16 (1967), 1361-1376. (1967) Zbl0152.10401MR0213694
  8. Amann H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach space, SIAM Rev. 18 (1976), 620-709. (1976) MR0415432
  9. Crandall M.G., Rabinowitz P.H., Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal. 58 (1975), 207-218. (1975) Zbl0309.35057MR0382848
  10. Lions P.L., On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), 441-467. (1982) Zbl0511.35033MR0678562
  11. Brezis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. (1983) Zbl0541.35029MR0709644
  12. Guo Z., Some existence and multiplicity results for a class of quasilinear elliptic eigenvalue problems, Nonlinear Anal. 18 (1992), 957-971. (1992) Zbl0782.35053MR1166534
  13. Guo Z., Webb J.R.L., Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large, Proc. Royal Soc. Edinburgh, Sect. A 124 (1994), 189-198. (1994) Zbl0799.35081MR1272439
  14. Guo Z., On the number of positive solutions for quasilinear elliptic eigenvalue problems, Nonlinear Anal. 27 2 (1996), 229-247. (1996) Zbl0860.35090MR1389480
  15. Guo Z., Existence and uniqueness of positive radial solutions for a class of quasilinear elliptic equations, Appl. Anal 47 (1992), 173-190. (1992) Zbl0788.35049MR1333953
  16. Yang Z., Yang H., A priori estimates for a quasilinear elliptic partial differential equations non-positone problems, Nonlinear Anal. 43 2 (2001), 173-181. (2001) Zbl0980.35038MR1790100
  17. Yang Z., Existence of entire explosive positive radial solutions for a class of quasilinear elliptic systems, J. Math. Anal. Appl. 288 (2003), 768-783. (2003) Zbl1087.35030MR2020196
  18. Hai D.D., Positive solutions of quasilinear boundary value problems, J. Math. Anal. Appl. 217 (1998), 672-686. (1998) Zbl0893.34017MR1492111
  19. Lin S.S., Positive singular solution for semilinear elliptic equations with supercritical growth, J. Differential Equations 114 (1994), 57-76. (1994) MR1302134
  20. Yang Z., Existence of positive entire solutions for singular and non-singular quasi-linear elliptic equation, J. Comput. Appl. Math. 197 (2006), 355-364. (2006) MR2260411
  21. Lu Q., Yang Z., Twizell E.H., Existence of entire explosive positive solutions of quasilinear elliptic equations, Appl. Math. Comput. 148 (2004), 359-372. (2004) MR2015378
  22. Guo Z., Yang Z., The structure of positive solutions to a class of quasilinear elliptic equations with a small parameter (in Chinese), Chinese Ann. Math. Ser. A 19 (1998), 385-392. (1998) MR1641075
  23. Mitidieri E., Pohozaev S.I., Nonexistence of positive solutions for quasilinear elliptic problem on 𝐑 N , Proc. Steklov Inst. Math. 227 (1999 186-216). (1999 186-216) MR1784317
  24. Manásevich R., Schmitt K., Boundary value problems for quasilinear second order differential equations, Nonlinear Analysis and Boundary Value Problems (Udine), CISM Courses and Lectures, 371, Springer, Vienna, 1996, pp.79-119. MR1465240
  25. Gidas B., Ni W.M., Nirenberg L., Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. (1979) Zbl0425.35020MR0544879
  26. Tolksdorf P., On the Dirichlet problem for quasilinear equations in domains with conical boundary point, Comm. Partial Differential Equations 8 7 (1983), 773-817. (1983) MR0700735

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.