Semisimplicity and global dimension of a finite von Neumann algebra

Lia Vaš

Mathematica Bohemica (2007)

  • Volume: 132, Issue: 1, page 13-26
  • ISSN: 0862-7959

Abstract

top
We prove that a finite von Neumann algebra 𝒜 is semisimple if the algebra of affiliated operators 𝒰 of 𝒜 is semisimple. When 𝒜 is not semisimple, we give the upper and lower bounds for the global dimensions of 𝒜 and 𝒰 . This last result requires the use of the Continuum Hypothesis.

How to cite

top

Vaš, Lia. "Semisimplicity and global dimension of a finite von Neumann algebra." Mathematica Bohemica 132.1 (2007): 13-26. <http://eudml.org/doc/250246>.

@article{Vaš2007,
abstract = {We prove that a finite von Neumann algebra $\{\mathcal \{A\}\}$ is semisimple if the algebra of affiliated operators $\{\mathcal \{U\}\}$ of $\{\mathcal \{A\}\}$ is semisimple. When $\{\mathcal \{A\}\}$ is not semisimple, we give the upper and lower bounds for the global dimensions of $\{\mathcal \{A\}\}$ and $\{\mathcal \{U\}\}.$ This last result requires the use of the Continuum Hypothesis.},
author = {Vaš, Lia},
journal = {Mathematica Bohemica},
keywords = {finite von Neumann algebra; algebra of affiliated operators; semisimple ring; global dimension; algebra of affiliated operators; semisimple ring; global dimension},
language = {eng},
number = {1},
pages = {13-26},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Semisimplicity and global dimension of a finite von Neumann algebra},
url = {http://eudml.org/doc/250246},
volume = {132},
year = {2007},
}

TY - JOUR
AU - Vaš, Lia
TI - Semisimplicity and global dimension of a finite von Neumann algebra
JO - Mathematica Bohemica
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 132
IS - 1
SP - 13
EP - 26
AB - We prove that a finite von Neumann algebra ${\mathcal {A}}$ is semisimple if the algebra of affiliated operators ${\mathcal {U}}$ of ${\mathcal {A}}$ is semisimple. When ${\mathcal {A}}$ is not semisimple, we give the upper and lower bounds for the global dimensions of ${\mathcal {A}}$ and ${\mathcal {U}}.$ This last result requires the use of the Continuum Hypothesis.
LA - eng
KW - finite von Neumann algebra; algebra of affiliated operators; semisimple ring; global dimension; algebra of affiliated operators; semisimple ring; global dimension
UR - http://eudml.org/doc/250246
ER -

References

top
  1. 10.1002/mana.19931640118, Math. Nachr. 164 (1993), 259–270. (1993) MR1251467DOI10.1002/mana.19931640118
  2. 10.1216/RMJ-1982-12-1-149, Rocky Mt. J. Math. 12 (1982), 149–164. (1982) Zbl0484.46054MR0649748DOI10.1216/RMJ-1982-12-1-149
  3. Baer * -rings, Die Grundlehren der mathematischen Wissenschaften, 195, Springer, 1972. (1972) MR0429975
  4. Von Neumann Algebras, North Holland, Amsterdam, 1981. (1981) Zbl0473.46040MR0641217
  5. Algebra, Reprint of the 1974 original, Graduate Texts in Mathematics, 73, Springer, Berlin, 1980. (1980) Zbl0442.00002MR0600654
  6. Les foncteurs dérivés de lim et leurs applications en théorie des modules, Lecture Notes in Mathematics, 254, Springer, Berlin, 1972. (1972) MR0407091
  7. Fundamentals of the Theory of Operator Algebras, volume 1: Elementary Theory, Pure and Applied Mathematics Series, 100, Academic Press, London, 1983. (1983) MR0719020
  8. Fundamentals of the Theory of Operator Algebras, volume 2: Advanced Theory, Pure and Applied Mathematics Series, 100, Academic Press, London, 1986. (1986) MR0859186
  9. Lectures on Modules and Rings, Graduate Texts in Mathematics, 189, Springer, New York, 1999. (1999) Zbl0911.16001MR1653294
  10. L 2 -invariants: Theory and Applications to Geometry and K-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Folge 3, 44, Springer, Berlin, 2002. (2002) Zbl1069.57017MR1926649
  11. Algebraic K -theory and Its Applications, Graduate Texts in Mathematics, 147, Springer, New York, 1994. (1994) Zbl0801.19001MR1282290
  12. 10.1081/AGB-200049871, Commun. Alg. 33 (2005), 663–688. (2005) Zbl1108.46044MR2128403DOI10.1081/AGB-200049871
  13. 10.1016/j.jalgebra.2005.02.018, J. Alg. 289 (2005), 614–639. (2005) MR2142388DOI10.1016/j.jalgebra.2005.02.018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.