Optimal Poiseuille flow in a finite elastic dyadic tree
Benjamin Mauroy; Nicolas Meunier
ESAIM: Mathematical Modelling and Numerical Analysis (2008)
- Volume: 42, Issue: 4, page 507-533
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- P. Dejours, Principles of Comparative Respiratory Physiology. Elsevier/North-Holland Biomedical Press (1982).
- P. Feynman, Electromagnétisme 2. InterEditions (1979).
- C. Grandmont, B. Maury and N. Meunier, A viscoelastic model with non-local damping application to the human lungs. ESAIM: M2AN40 (2006) 201–224.
- B. Housset, Pneumologie. Masson (1999).
- B. Mauroy, Hydrodynamique dans le poumon, relations entre flux et géométries. Ph.D. thesis, ENS de Cachan (2004), URIhttp://www.cmla.ens-cachan.fr/~mauroy/mauroy_these.pdf
- B. Mauroy, M. Filoche, J.S. Andrade, Jr., and B. Sapoval, Interplay between geometry and flow distribution in an airway tree. Phys. Rev. Lett.90 (2003) 148101.
- B. Mauroy, M. Filoche, E.R. Weibel and B. Sapoval, An optimal bronchial tree may be dangerous. Nature427 (2004) 633–636.
- B. Maury and C. Vannier, Une modélisation du poumon humain par un arbre infini. CANUM (2006).
- M.L. Oelze, R.J. Miller and J.P. Blue, Jr., Impedance measurements of ex vivo rat lung at different volumes of inflation. J. Acoust. Soc. Am.114 (2003) 3384–3393.
- F. Preteux, C. Fetita, A. Capderou and P. Grenier, Modeling, segmentation, and caliber estimation of bronchi in high-resolution computerized tomography. J. Electron. Imaging8 (1999) 36–45.
- F.G. Salerno and M.S. Ludwig, Elastic moduli of excised constricted rat lungs. J. Appl. Physiol.86 (1999) 66–70.
- E.R. Weibel, Morphometry of the Human Lung. Springer, Verlag (1963).
- E.R. Weibel, The Pathway for Oxygen. Harvard University Press (1984).
- G.B. West, J.H. Brown and B.J. Enquist, A general model for the origin of allometric scaling laws in biology. Science276 (1997) 122–126.
- M.S. Zach, The physiology of forced expiration. Paed. Resp. Review1 (2000) 36–39.