A full discretization of the time-dependent Navier-Stokes equations by a two-grid scheme
ESAIM: Mathematical Modelling and Numerical Analysis (2008)
- Volume: 42, Issue: 1, page 141-174
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- H. Abboud, V. Girault and T. Sayah, Two-grid finite element scheme for the fully discrete time-dependent Navier-Stokes problem. C. R. Acad. Sci. Paris, Ser. I341 (2005).
- H. Abboud, V. Girault and T. Sayah, Second-order two-grid finite element scheme for the fully discrete transient Navier-Stokes equations. Preprint, . URIhttp://www.ann.jussieu.fr/publications/2007/R07040.html
- R.-A. Adams, Sobolev Spaces. Academic Press, New York (1975).
- D. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations. Calcolo21 (1984) 337–344.
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978).
- V. Girault and J.-L. Lions, Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. Portugal. Math.58 (2001) 25–57.
- V. Girault and J.-L. Lions, Two-grid finite-element schemes for the transient Navier-Stokes equations. ESAIM: M2AN35 (2001) 945–980.
- V. Girault and P.-A. Raviart, Finite Element Methods for the Navier-Stokes Equations. Theory and Algorithms, in Springer Series in Computational Mathematics5, Springer-Verlag, Berlin (1986).
- P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Monographs and Studies in Mathematics24. Pitman, Boston, (1985).
- F. Hecht and O. Pironneau, FreeFem++. See: . URIhttp://www.freefem.org
- O.A. Ladyzenskaya, The Mathematical Theory of Viscous Incompressible Flow. (In Russian, 1961), First English translation, Gordon & Breach, New York (1963).
- W. Layton, A two-level discretization method for the Navier-Stokes equations. Computers Math. Applic.26 (1993) 33–38.
- W. Layton and W. Lenferink, Two-level Picard-defect corrections for the Navier-Stokes equations at high Reynolds number. Applied Math. Comput.69 (1995) 263–274.
- J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969).
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications I. Dunod, Paris (1968).
- J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967).
- R. Temam, Une méthode d'approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. France98 (1968) 115–152.
- M.F. Wheeler, A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM. J. Numer. Anal.10 (1973) 723–759.
- J. Xu, Some Two-Grid Finite Element Methods. Tech. Report, P.S.U. (1992).
- J. Xu, A novel two-grid method of semilinear elliptic equations. SIAM J. Sci. Comput.15 (1994) 231–237.
- J. Xu, Two-grid finite element discretization techniques for linear and nonlinear PDE. SIAM J. Numer. Anal.33 (1996) 1759–1777.