Thick obstacle problems with dynamic adhesive contact
ESAIM: Mathematical Modelling and Numerical Analysis (2008)
- Volume: 42, Issue: 6, page 1021-1045
 - ISSN: 0764-583X
 
Access Full Article
topAbstract
topHow to cite
topAhn, Jeongho. "Thick obstacle problems with dynamic adhesive contact." ESAIM: Mathematical Modelling and Numerical Analysis 42.6 (2008): 1021-1045. <http://eudml.org/doc/250284>.
@article{Ahn2008,
	abstract = {
In this work, we consider dynamic frictionless contact with adhesion
between a viscoelastic body of the Kelvin-Voigt type and a
stationary rigid obstacle, based on the Signorini's contact conditions.
Including the adhesion processes modeled by the bonding field, a new
version of energy function is defined. We use the energy function
to derive a new form of energy balance which is supported by numerical
results. Employing the time-discretization,
 we establish a numerical formulation and investigate the convergence of numerical trajectories. The fully
discrete approximation which satisfies the complementarity conditions
is computed by using the nonsmooth Newton's method with the Kanzow-Kleinmichel
function. Numerical simulations of a viscoelastic beam clamped at
two ends are presented.
},
	author = {Ahn, Jeongho},
	journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
	keywords = {Adhesion; Signorini's contact; complementarity conditions; time-discretization.; Signorini conditions; time discretization; convergence},
	language = {eng},
	month = {9},
	number = {6},
	pages = {1021-1045},
	publisher = {EDP Sciences},
	title = {Thick obstacle problems with dynamic adhesive contact},
	url = {http://eudml.org/doc/250284},
	volume = {42},
	year = {2008},
}
TY  - JOUR
AU  - Ahn, Jeongho
TI  - Thick obstacle problems with dynamic adhesive contact
JO  - ESAIM: Mathematical Modelling and Numerical Analysis
DA  - 2008/9//
PB  - EDP Sciences
VL  - 42
IS  - 6
SP  - 1021
EP  - 1045
AB  - 
In this work, we consider dynamic frictionless contact with adhesion
between a viscoelastic body of the Kelvin-Voigt type and a
stationary rigid obstacle, based on the Signorini's contact conditions.
Including the adhesion processes modeled by the bonding field, a new
version of energy function is defined. We use the energy function
to derive a new form of energy balance which is supported by numerical
results. Employing the time-discretization,
 we establish a numerical formulation and investigate the convergence of numerical trajectories. The fully
discrete approximation which satisfies the complementarity conditions
is computed by using the nonsmooth Newton's method with the Kanzow-Kleinmichel
function. Numerical simulations of a viscoelastic beam clamped at
two ends are presented.
LA  - eng
KW  - Adhesion; Signorini's contact; complementarity conditions; time-discretization.; Signorini conditions; time discretization; convergence
UR  - http://eudml.org/doc/250284
ER  - 
References
top- J. Ahn, A vibrating string with dynamic frictionless impact. Appl. Numer. Math.57 (2007) 861–884.
 - J. Ahn and D.E. Stewart, Euler-Bernoulli beam with dynamic contact: Discretization, convergence, and numerical results. SIAM J. Numer. Anal.43 (2005) 1455–1480 (electronic).
 - J. Ahn and D.E. Stewart, Existence of solutions for a class of impact problems without viscosity. SIAM J. Math. Anal.38 (2006) 37–63 (electronic).
 - J. Ahn and D.E. Stewart, Euler-Bernoulli beam with dynamic contact: Penalty approximation and existence. Numer. Funct. Anal. Optim.28 (2007) 1003–1026.
 - J. Ahn and D.E. Stewart, Dynamic frictionless contact in linear viscoelasticity. IMA J. Numer. Anal. doi:. DOI10.1093/imanum/drm029
 - K.T. Andrews, L. Chapman, J.R. Ferández, M. Fisackerly, M. Shillor, L. Vanerian and T. Vanhouten, A membrane in adhesive contact. SIAM J. Appl. Math.64 (2003) 152–169.
 - K.T. Andrews, S. Kruk and M. Shillor, Modelling and simulations of a bonded rod. Math. Comput. Model.42 (2005) 553–572.
 - J.H. Bramble and X. Zhang, The Analysis of Multigrid Methods, Handbook of Numerical AnalysisVII. North-Holland, Amsterdam (2000).
 - D. Candeloro and A. Volčič, Radon-Nikodým theorems, Vol. I. North Holland/Elsevier (2002).
 - O. Chau, J.R. Ferández, M. Shillor and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion. J. Comput. Appl. Math.159 (2003) 431–465.
 - O. Chau, M. Shillor and M. Sofonea, Dynamic frictionless contact with adhesion. Z. Angew. Math. Phys.55 (2004) 32–47.
 - F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer Series in Operations ResearchI, II. Springer-Verlag, New York (2003).
 - J.R. Ferández, M. Shillor and M. Sofonea, Analysis and numerical simulations of a dynamic contact problem with adhesion. Math. Comput. Modelling37 (2003) 1317–1333.
 - M. Frémond, Équilibre des structures qui adhèrent à leur support. C. R. Acad. Sci. Paris Sér. II295 (1982) 913–916.
 - M. Frémond, Adhérence des solides. J. Méc. Théor. Appl.6 (1987) 383–407.
 - M. Frémond, Contact with adhesion, in Topics Nonsmooth Mechanics, J.J. Moreau, P.D. Panagiotopoulos and G. Strang Eds. (1988) 157–186
 - M. Frémond, E. Sacco, N. Point and J.M. Tien, Contact with adhesion, in ESDA Proceedings of the 1996 Engineering Systems Design and Analysis Conference, A. Lagarde and M. Raous Eds., ASME, New York (1996) 151–156.
 - W. Han, K.L. Kuttler, M. Shillor and M. Sofonea, Elastic beam in adhesive contact. Int. J. Solids Structures39 (2002) 1145–1164.
 - L. Jianu, M. Shillor and M. Sofonea, A viscoelastic frictionless contact problem with adhesion. Appl. Anal.80 (2001) 233–255.
 - C. Kanzow and H. Kleinmichel, A new class of semismooth Newton-type methods for nonlinear complementarity problems. Comput. Optim. Appl.11 (1998) 227–251.
 - K. Kuttler, Modern Analysis. CRC Press, Boca Raton, FL, USA (1998).
 - G. Lebeau and M. Schatzman, A wave problem in a half-space with a unilateral contraint at the boundary. J. Diff. Eq.53 (1984) 309–361.
 - A. Petrov and M. Schatzman, Viscoélastodynamique monodimensionnelle avec conditions de Signorini. C. R. Acad. Sci. Paris Sér. I334 (2002) 983–988.
 - L.Q. Qi and J. Sun, A nonsmooth version of Newton's method. Math. Program.58 (1993) 353–367.
 - M. Raous, L. Cangémi and M. Cocu, A consistent model coupling adhesion, friction, and unilateral contact. Comput. Methods Appl. Mech. Engrg.177 (1999) 383–399.
 - M. Schatzman, A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle. J. Math. Anal. Appl.73 (1980) 138–191.
 - M. Shillor, M. Sofonea and J. Telega, Models and Analysis of Quasistatic Contact, Lect. Notes Phys.655. Springer, Berlin-Heidelberg-New York (2004).
 - M. Sofonea, W. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics276. Chapman-Hall/CRC Press, New York (2006).
 - D.E. Stewart, Convolution complementarity problems with application to impact problems. IMA J. Appl. Math.71 (2006) 92–119.
 - D.E. Stewart, Differentiating complementarity problems and fractional index convolution complementarity problems. Houston J. Math.33 (2007) 301–322.
 - D.E. Stewart, Energy balance for viscoelastic bodies in frictionless contact. (Submitted).
 - M.E. Taylor, Partial Differential Equations 1, Applied Mathematical Sciences115. Springer-Verlag, New York (1996).
 - H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. North Holland, Amsterdam, New York (1978).
 - J. Wloka, Partial Differential Equations. Cambridge University Press (1987).
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.