Canonical 1-forms on higher order adapted frame bundles

Jan Kurek; Włodzimierz M. Mikulski

Archivum Mathematicum (2008)

  • Volume: 044, Issue: 2, page 115-118
  • ISSN: 0044-8753

Abstract

top
Let be a foliated -dimensional manifold with -dimensional foliation . Let be a finite dimensional vector space over . We describe all canonical (-invariant) -valued -forms on the -th order adapted frame bundle of .

How to cite

top

Kurek, Jan, and Mikulski, Włodzimierz M.. "Canonical 1-forms on higher order adapted frame bundles." Archivum Mathematicum 044.2 (2008): 115-118. <http://eudml.org/doc/250286>.

@article{Kurek2008,
abstract = {Let $(M,\mathcal \{F\})$ be a foliated $m+n$-dimensional manifold $M$ with $n$-dimensional foliation $\mathcal \{F\}$. Let $V$ be a finite dimensional vector space over $\mathbf \{R\}$. We describe all canonical ($\{\mathcal \{F\}\}\mbox\{\it ol\}_\{m,n\}$-invariant) $V$-valued $1$-forms $\Theta \colon TP^r(M,\{\mathcal \{F\}\}) \rightarrow V$ on the $r$-th order adapted frame bundle $P^r(M,\mathcal \{F\})$ of $(M,\mathcal \{F\})$.},
author = {Kurek, Jan, Mikulski, Włodzimierz M.},
journal = {Archivum Mathematicum},
keywords = {foliated manifold; infinitesimal automorphism; higher order adapted frame bundle; canonical $1$-form; foliated manifold; infinitesimal automorphism; higher order adapted frame bundle, canonical 1-form},
language = {eng},
number = {2},
pages = {115-118},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Canonical 1-forms on higher order adapted frame bundles},
url = {http://eudml.org/doc/250286},
volume = {044},
year = {2008},
}

TY - JOUR
AU - Kurek, Jan
AU - Mikulski, Włodzimierz M.
TI - Canonical 1-forms on higher order adapted frame bundles
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 2
SP - 115
EP - 118
AB - Let $(M,\mathcal {F})$ be a foliated $m+n$-dimensional manifold $M$ with $n$-dimensional foliation $\mathcal {F}$. Let $V$ be a finite dimensional vector space over $\mathbf {R}$. We describe all canonical (${\mathcal {F}}\mbox{\it ol}_{m,n}$-invariant) $V$-valued $1$-forms $\Theta \colon TP^r(M,{\mathcal {F}}) \rightarrow V$ on the $r$-th order adapted frame bundle $P^r(M,\mathcal {F})$ of $(M,\mathcal {F})$.
LA - eng
KW - foliated manifold; infinitesimal automorphism; higher order adapted frame bundle; canonical $1$-form; foliated manifold; infinitesimal automorphism; higher order adapted frame bundle, canonical 1-form
UR - http://eudml.org/doc/250286
ER -

References

top
  1. Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer Verlag, 1993. (1993) MR1202431
  2. Wolak, R. A., Geometric structures on foliated manifolds, Publications del Departamento de Geometria y Topologia, Universidad de Santiago de Compostella 76 (1989). (1989) Zbl0838.53029MR1040852

NotesEmbed ?

top

You must be logged in to post comments.