Displaying similar documents to “Canonical 1-forms on higher order adapted frame bundles”

The jet prolongations of 2 -fibred manifolds and the flow operator

Włodzimierz M. Mikulski (2008)

Archivum Mathematicum

Similarity:

Let r , s , m , n , q be natural numbers such that s r . We prove that any 2 - 𝕄 m , n , q -natural operator A : T 2-proj T J ( s , r ) transforming 2 -projectable vector fields V on ( m , n , q ) -dimensional 2 -fibred manifolds Y X M into vector fields A ( V ) on the ( s , r ) -jet prolongation bundle J ( s , r ) Y is a constant multiple of the flow operator 𝒥 ( s , r ) .

Liftings of 1-forms to ( J r T * ) *

Włodzimierz M. Mikulski (2002)

Colloquium Mathematicae

Similarity:

Let J r T * M be the r-jet prolongation of the cotangent bundle of an n-dimensional manifold M and let ( J r T * M ) * be the dual vector bundle. For natural numbers r and n, a complete classification of all linear natural operators lifting 1-forms from M to 1-forms on ( J r T * M ) * is given.

On symmetrization of jets

Włodzimierz M. Mikulski (2011)

Czechoslovak Mathematical Journal

Similarity:

Let F = F ( A , H , t ) and F 1 = F ( A 1 , H 1 , t 1 ) be fiber product preserving bundle functors on the category ℱℳ m of fibred manifolds Y with m -dimensional bases and fibred maps covering local diffeomorphisms. We define a quasi-morphism ( A , H , t ) ( A 1 , H 1 , t 1 ) to be a G L ( m ) -invariant algebra homomorphism ν : A A 1 with t 1 = ν t . The main result is that there exists an ℱℳ m -natural transformation F Y F 1 Y depending on a classical linear connection on the base of Y if and only if there exists a quasi-morphism ( A , H , t ) ( A 1 , H 1 , t 1 ) . As applications, we study existence problems of symmetrization (holonomization)...

Constructions on second order connections

J. Kurek, W. M. Mikulski (2007)

Annales Polonici Mathematici

Similarity:

We classify all m , n -natural operators : J ² J ² V A transforming second order connections Γ: Y → J²Y on a fibred manifold Y → M into second order connections ( Γ ) : V A Y J ² V A Y on the vertical Weil bundle V A Y M corresponding to a Weil algebra A.

The natural operators lifting 1-forms to some vector bundle functors

J. Kurek, W. M. Mikulski (2002)

Colloquium Mathematicae

Similarity:

Let F:ℳ f→ ℬ be a vector bundle functor. First we classify all natural operators T | f T ( 0 , 0 ) ( F | f ) * transforming vector fields to functions on the dual bundle functor ( F | f ) * . Next, we study the natural operators T * | f T * ( F | f ) * lifting 1-forms to ( F | f ) * . As an application we classify the natural operators T * | f T * ( F | f ) * for some well known vector bundle functors F.

Lifting to the r-frame bundle by means of connections

J. Kurek, W. M. Mikulski (2010)

Annales Polonici Mathematici

Similarity:

Let m and r be natural numbers and let P r : f m be the rth order frame bundle functor. Let F : f m and G : f k be natural bundles, where k = d i m ( P r m ) . We describe all f m -natural operators A transforming sections σ of F M M and classical linear connections ∇ on M into sections A(σ,∇) of G ( P r M ) P r M . We apply this general classification result to many important natural bundles F and G and obtain many particular classifications.

On lifting of connections to Weil bundles

Jan Kurek, Włodzimierz M. Mikulski (2012)

Annales Polonici Mathematici

Similarity:

We prove that the problem of finding all f m -natural operators B : Q Q T A lifting classical linear connections ∇ on m-manifolds M to classical linear connections B M ( ) on the Weil bundle T A M corresponding to a p-dimensional (over ℝ) Weil algebra A is equivalent to the one of finding all f m -natural operators C : Q ( T ¹ p - 1 , T * T * T ) transforming classical linear connections ∇ on m-manifolds M into base-preserving fibred maps C M ( ) : T ¹ p - 1 M = M p - 1 T M T * M T * M T M .