On endomorphisms of multiplication and comultiplication modules

H. Ansari-Toroghy; F. Farshadifar

Archivum Mathematicum (2008)

  • Volume: 044, Issue: 1, page 9-15
  • ISSN: 0044-8753

Abstract

top
Let R be a ring with an identity (not necessarily commutative) and let M be a left R -module. This paper deals with multiplication and comultiplication left R -modules M having right End R ( M ) -module structures.

How to cite

top

Ansari-Toroghy, H., and Farshadifar, F.. "On endomorphisms of multiplication and comultiplication modules." Archivum Mathematicum 044.1 (2008): 9-15. <http://eudml.org/doc/250288>.

@article{Ansari2008,
abstract = {Let $R$ be a ring with an identity (not necessarily commutative) and let $M$ be a left $R$-module. This paper deals with multiplication and comultiplication left $R$-modules $M$ having right $\operatorname\{End\}_R(M)$-module structures.},
author = {Ansari-Toroghy, H., Farshadifar, F.},
journal = {Archivum Mathematicum},
keywords = {endomorphisms; multiplication modules; comultiplication modules; endomorphisms; multiplication module; comultiplication module},
language = {eng},
number = {1},
pages = {9-15},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On endomorphisms of multiplication and comultiplication modules},
url = {http://eudml.org/doc/250288},
volume = {044},
year = {2008},
}

TY - JOUR
AU - Ansari-Toroghy, H.
AU - Farshadifar, F.
TI - On endomorphisms of multiplication and comultiplication modules
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 1
SP - 9
EP - 15
AB - Let $R$ be a ring with an identity (not necessarily commutative) and let $M$ be a left $R$-module. This paper deals with multiplication and comultiplication left $R$-modules $M$ having right $\operatorname{End}_R(M)$-module structures.
LA - eng
KW - endomorphisms; multiplication modules; comultiplication modules; endomorphisms; multiplication module; comultiplication module
UR - http://eudml.org/doc/250288
ER -

References

top
  1. Anderson, W., Fuller, K. R., Rings and categories of modules, Springer-Verlag, New York-Heidelberg-Berlin, 1974. (1974) Zbl0301.16001MR0417223
  2. Ansari-Toroghy, H., Farshadifar, F., The dual notion of multiplication modules, Taiwanese J. Math. (to appear). (to appear) Zbl1137.16302MR2348561
  3. Bae, Soon-Sook, On submodule inducing prime ideals of endomorphism ring, East Asian Math. 16 (1) (2000), 33–48. (2000) 
  4. Choi, C. W., Multiplication modules and endomorphisms, Math. J. Toyama Univ. 18 (1995), 1–8. (1995) Zbl0876.13001MR1369692
  5. Choi, C. W., Smith, P. F., On endomorphisms of multiplication modules, J. Korean Math. Soc. 31 (1) (1994), 89–95. (1994) Zbl0820.13003MR1269453
  6. Faith, C., Algebra II: Ring theory, Springer-Verlag, New York-Heidelberg-Berlin, 1976. (1976) MR0427349
  7. Ghorbani, A., Haghang, A., 10.1016/S0021-8693(02)00124-2, J. Algebra 255 (2002), 324–341. (2002) MR1935502DOI10.1016/S0021-8693(02)00124-2
  8. Haghang, A., Vedali, M. R., 10.1006/jabr.2001.8851, J. Algebra 243 (2001), 765–779. (2001) MR1850657DOI10.1006/jabr.2001.8851
  9. Lomp, Ch. E., 10.1142/S0219498805001022, J. Algebra Appl. 4 (1) (2005), 77–98. (2005) MR2130464DOI10.1142/S0219498805001022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.