Comultiplication modules over a pullback of Dedekind domains

Reza Ebrahimi Atani; Shahabaddin Ebrahimi Atani

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 4, page 1103-1114
  • ISSN: 0011-4642

Abstract

top
First, we give complete description of the comultiplication modules over a Dedekind domain. Second, if R is the pullback of two local Dedekind domains, then we classify all indecomposable comultiplication R -modules and establish a connection between the comultiplication modules and the pure-injective modules over such domains.

How to cite

top

Atani, Reza Ebrahimi, and Atani, Shahabaddin Ebrahimi. "Comultiplication modules over a pullback of Dedekind domains." Czechoslovak Mathematical Journal 59.4 (2009): 1103-1114. <http://eudml.org/doc/37981>.

@article{Atani2009,
abstract = {First, we give complete description of the comultiplication modules over a Dedekind domain. Second, if $R$ is the pullback of two local Dedekind domains, then we classify all indecomposable comultiplication $R$-modules and establish a connection between the comultiplication modules and the pure-injective modules over such domains.},
author = {Atani, Reza Ebrahimi, Atani, Shahabaddin Ebrahimi},
journal = {Czechoslovak Mathematical Journal},
keywords = {pullback; separated modules and representations; non-separated modules; comultiplication modules; dedekind domain; pure-injective modules; Prüfer modules; pullback; separated module; representation; non-separated module; comultiplication module; Dedekind domain; pure-injective module; Prüfer module},
language = {eng},
number = {4},
pages = {1103-1114},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Comultiplication modules over a pullback of Dedekind domains},
url = {http://eudml.org/doc/37981},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Atani, Reza Ebrahimi
AU - Atani, Shahabaddin Ebrahimi
TI - Comultiplication modules over a pullback of Dedekind domains
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 1103
EP - 1114
AB - First, we give complete description of the comultiplication modules over a Dedekind domain. Second, if $R$ is the pullback of two local Dedekind domains, then we classify all indecomposable comultiplication $R$-modules and establish a connection between the comultiplication modules and the pure-injective modules over such domains.
LA - eng
KW - pullback; separated modules and representations; non-separated modules; comultiplication modules; dedekind domain; pure-injective modules; Prüfer modules; pullback; separated module; representation; non-separated module; comultiplication module; Dedekind domain; pure-injective module; Prüfer module
UR - http://eudml.org/doc/37981
ER -

References

top
  1. Assen, I., Simson, D., Skowroński, A., Representation Theory of Associative Algebra. Vol. 1, Techniques of Representation Theory. London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge-New York (2007). (2007) MR2197389
  2. Ansari-Toroghy, H., Farshadifar, F., On endomorphisms of multiplication and comultiplication modules, Archivum Mathematicum 44 (2008), 9-15. (2008) MR2431226
  3. Bass, H., 10.1007/BF01112819, Math. Z. 82 (1963), 8-29. (1963) Zbl0112.26604MR0153708DOI10.1007/BF01112819
  4. El-Bast, Z. A., Smith, P. F., 10.1080/00927878808823601, Comm. Algebra. 16 (1988), 755-779. (1988) Zbl0642.13003MR0932633DOI10.1080/00927878808823601
  5. Atani, S. Ebrahimi, 10.1080/00927870008827074, Comm. Algebra 28 (2000), 4037-4069. (2000) MR1772008DOI10.1080/00927870008827074
  6. Atani, S. Ebrahimi, 10.1081/AGB-120003982, Comm. Algebra 30 (2002), 2675-2685. (2002) Zbl1011.13004MR1908232DOI10.1081/AGB-120003982
  7. Atani, S. Ebrahimi, 10.1007/s10587-004-6426-4, Czech. Math. J. 54 (2004), 781-789. (2004) MR2086734DOI10.1007/s10587-004-6426-4
  8. Atani, S. Ebrahimi, Farzalipour, F., Weak multiplication modules over a pullback of Dedekind domains, (to appear) in Colloq. Math. MR2457281
  9. Atani, S. Ebrahimi, Indecomposable weak multiplication modules over Dedekind domains, Demonstratio Mathematica XLI 41 (2008), 33-43. (2008) MR2394295
  10. Atani, S. Ebrahimi, 10.1007/s10012-001-0001-9, Southeast Asian Bull. Math. 25 (2001), 1-6. (2001) MR1832737DOI10.1007/s10012-001-0001-9
  11. Facchini, A., Vamos, P., Injective modules over pullbacks, J. London Math. Soc. 31 (1985), 125-138. (1985) Zbl0526.16014MR0812770
  12. Kietpiński, R., On Γ -pure injective modules, Bull. Polon. Acad. Sci. Math. 15 (1967), 127-131. (1967) 
  13. Levy, L., 10.1016/0021-8693(81)90106-X, J. Algebra 71 (1981), 50-61. (1981) Zbl0508.16008MR0627425DOI10.1016/0021-8693(81)90106-X
  14. Levy, L., 10.1016/0021-8693(85)90176-0, J. Algebra 93 (1985), 1-116. (1985) Zbl0564.13010MR0780485DOI10.1016/0021-8693(85)90176-0
  15. Levy, L., 10.1016/0021-8693(81)90107-1, J. Algebra 70 (1981), 62-114. (1981) Zbl0508.16009MR0627426DOI10.1016/0021-8693(81)90107-1
  16. Nazarova, L. A., Roiter, A. V., Finitely generated modules over a dyad of local Dedekind rings and finite group having an abelian normal subgroup of index p , Russian Izv. Acad. Nauk. SSSR 33 (1969), 65-89. (1969) MR0260859
  17. Prest, M., Model Theory and Modules, London Mathematical Society, Cambridge University Press, Cambridge (1988). (1988) Zbl0634.03025MR0933092
  18. Prest, M., 10.1006/jabr.1998.7472, J. Algebra 207 (1998), 146-164. (1998) Zbl0936.16014MR1643078DOI10.1006/jabr.1998.7472
  19. Simson, D., Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra, Logic and Applications. Vol. 4, Gordon and Breach Science Publishers, Switzerland-Australia (1992). (1992) Zbl0818.16009MR1241646
  20. Simson, D., 10.1016/j.jpaa.2005.01.012, J. Pure Appl. Algebra 202 (2005), 118-132. (2005) Zbl1151.16014MR2163404DOI10.1016/j.jpaa.2005.01.012
  21. Sharp, R. Y., Steps in Commutative Algebra, London Mathematical Society, Student Texts, Vol. 19, Cambridge University Press, Cambridge (1990). (1990) Zbl0703.13001MR1070568
  22. Warfield, R. B., 10.2140/pjm.1969.28.699, Pacific J. Math. 28 (1969), 699-719. (1969) Zbl0172.04801MR0242885DOI10.2140/pjm.1969.28.699
  23. Wiseman, A. N., 10.1017/S0305004100062964, Math. Proc. Cambridge Philos. Soc. 97 (1985), 399-106. (1985) Zbl0588.16016MR0778673DOI10.1017/S0305004100062964

NotesEmbed ?

top

You must be logged in to post comments.