Comultiplication modules over a pullback of Dedekind domains

Reza Ebrahimi Atani; Shahabaddin Ebrahimi Atani

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 4, page 1103-1114
  • ISSN: 0011-4642

Abstract

top
First, we give complete description of the comultiplication modules over a Dedekind domain. Second, if R is the pullback of two local Dedekind domains, then we classify all indecomposable comultiplication R -modules and establish a connection between the comultiplication modules and the pure-injective modules over such domains.

How to cite

top

Atani, Reza Ebrahimi, and Atani, Shahabaddin Ebrahimi. "Comultiplication modules over a pullback of Dedekind domains." Czechoslovak Mathematical Journal 59.4 (2009): 1103-1114. <http://eudml.org/doc/37981>.

@article{Atani2009,
abstract = {First, we give complete description of the comultiplication modules over a Dedekind domain. Second, if $R$ is the pullback of two local Dedekind domains, then we classify all indecomposable comultiplication $R$-modules and establish a connection between the comultiplication modules and the pure-injective modules over such domains.},
author = {Atani, Reza Ebrahimi, Atani, Shahabaddin Ebrahimi},
journal = {Czechoslovak Mathematical Journal},
keywords = {pullback; separated modules and representations; non-separated modules; comultiplication modules; dedekind domain; pure-injective modules; Prüfer modules; pullback; separated module; representation; non-separated module; comultiplication module; Dedekind domain; pure-injective module; Prüfer module},
language = {eng},
number = {4},
pages = {1103-1114},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Comultiplication modules over a pullback of Dedekind domains},
url = {http://eudml.org/doc/37981},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Atani, Reza Ebrahimi
AU - Atani, Shahabaddin Ebrahimi
TI - Comultiplication modules over a pullback of Dedekind domains
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 1103
EP - 1114
AB - First, we give complete description of the comultiplication modules over a Dedekind domain. Second, if $R$ is the pullback of two local Dedekind domains, then we classify all indecomposable comultiplication $R$-modules and establish a connection between the comultiplication modules and the pure-injective modules over such domains.
LA - eng
KW - pullback; separated modules and representations; non-separated modules; comultiplication modules; dedekind domain; pure-injective modules; Prüfer modules; pullback; separated module; representation; non-separated module; comultiplication module; Dedekind domain; pure-injective module; Prüfer module
UR - http://eudml.org/doc/37981
ER -

References

top
  1. Assen, I., Simson, D., Skowroński, A., Representation Theory of Associative Algebra. Vol. 1, Techniques of Representation Theory. London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge-New York (2007). (2007) MR2197389
  2. Ansari-Toroghy, H., Farshadifar, F., On endomorphisms of multiplication and comultiplication modules, Archivum Mathematicum 44 (2008), 9-15. (2008) MR2431226
  3. Bass, H., 10.1007/BF01112819, Math. Z. 82 (1963), 8-29. (1963) Zbl0112.26604MR0153708DOI10.1007/BF01112819
  4. El-Bast, Z. A., Smith, P. F., 10.1080/00927878808823601, Comm. Algebra. 16 (1988), 755-779. (1988) Zbl0642.13003MR0932633DOI10.1080/00927878808823601
  5. Atani, S. Ebrahimi, 10.1080/00927870008827074, Comm. Algebra 28 (2000), 4037-4069. (2000) MR1772008DOI10.1080/00927870008827074
  6. Atani, S. Ebrahimi, 10.1081/AGB-120003982, Comm. Algebra 30 (2002), 2675-2685. (2002) Zbl1011.13004MR1908232DOI10.1081/AGB-120003982
  7. Atani, S. Ebrahimi, 10.1007/s10587-004-6426-4, Czech. Math. J. 54 (2004), 781-789. (2004) MR2086734DOI10.1007/s10587-004-6426-4
  8. Atani, S. Ebrahimi, Farzalipour, F., Weak multiplication modules over a pullback of Dedekind domains, (to appear) in Colloq. Math. MR2457281
  9. Atani, S. Ebrahimi, Indecomposable weak multiplication modules over Dedekind domains, Demonstratio Mathematica XLI 41 (2008), 33-43. (2008) MR2394295
  10. Atani, S. Ebrahimi, 10.1007/s10012-001-0001-9, Southeast Asian Bull. Math. 25 (2001), 1-6. (2001) MR1832737DOI10.1007/s10012-001-0001-9
  11. Facchini, A., Vamos, P., Injective modules over pullbacks, J. London Math. Soc. 31 (1985), 125-138. (1985) Zbl0526.16014MR0812770
  12. Kietpiński, R., On Γ -pure injective modules, Bull. Polon. Acad. Sci. Math. 15 (1967), 127-131. (1967) 
  13. Levy, L., 10.1016/0021-8693(81)90106-X, J. Algebra 71 (1981), 50-61. (1981) Zbl0508.16008MR0627425DOI10.1016/0021-8693(81)90106-X
  14. Levy, L., 10.1016/0021-8693(85)90176-0, J. Algebra 93 (1985), 1-116. (1985) Zbl0564.13010MR0780485DOI10.1016/0021-8693(85)90176-0
  15. Levy, L., 10.1016/0021-8693(81)90107-1, J. Algebra 70 (1981), 62-114. (1981) Zbl0508.16009MR0627426DOI10.1016/0021-8693(81)90107-1
  16. Nazarova, L. A., Roiter, A. V., Finitely generated modules over a dyad of local Dedekind rings and finite group having an abelian normal subgroup of index p , Russian Izv. Acad. Nauk. SSSR 33 (1969), 65-89. (1969) MR0260859
  17. Prest, M., Model Theory and Modules, London Mathematical Society, Cambridge University Press, Cambridge (1988). (1988) Zbl0634.03025MR0933092
  18. Prest, M., 10.1006/jabr.1998.7472, J. Algebra 207 (1998), 146-164. (1998) Zbl0936.16014MR1643078DOI10.1006/jabr.1998.7472
  19. Simson, D., Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra, Logic and Applications. Vol. 4, Gordon and Breach Science Publishers, Switzerland-Australia (1992). (1992) Zbl0818.16009MR1241646
  20. Simson, D., 10.1016/j.jpaa.2005.01.012, J. Pure Appl. Algebra 202 (2005), 118-132. (2005) Zbl1151.16014MR2163404DOI10.1016/j.jpaa.2005.01.012
  21. Sharp, R. Y., Steps in Commutative Algebra, London Mathematical Society, Student Texts, Vol. 19, Cambridge University Press, Cambridge (1990). (1990) Zbl0703.13001MR1070568
  22. Warfield, R. B., 10.2140/pjm.1969.28.699, Pacific J. Math. 28 (1969), 699-719. (1969) Zbl0172.04801MR0242885DOI10.2140/pjm.1969.28.699
  23. Wiseman, A. N., 10.1017/S0305004100062964, Math. Proc. Cambridge Philos. Soc. 97 (1985), 399-106. (1985) Zbl0588.16016MR0778673DOI10.1017/S0305004100062964

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.