External approximation of first order variational problems via W-1,p estimates
ESAIM: Control, Optimisation and Calculus of Variations (2008)
- Volume: 14, Issue: 4, page 802-824
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topDavini, Cesare, and Paroni, Roberto. "External approximation of first order variational problems via W-1,p estimates." ESAIM: Control, Optimisation and Calculus of Variations 14.4 (2008): 802-824. <http://eudml.org/doc/250314>.
@article{Davini2008,
abstract = {
Here we present an approximation method for a rather broad class of first order
variational problems in spaces of piece-wise constant functions over
triangulations of the base domain. The convergence of the method is based on an
inequality involving $W^\{-1, p\}$ norms obtained by Nečas and on the general
framework of Γ-convergence theory.
},
author = {Davini, Cesare, Paroni, Roberto},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Numerical methods; non-conforming approximations; Γ-convergence; -convergence; estimates; discontinuous Galerkin method; Necas reverse inequality; convergence; discretized functionals},
language = {eng},
month = {1},
number = {4},
pages = {802-824},
publisher = {EDP Sciences},
title = {External approximation of first order variational problems via W-1,p estimates},
url = {http://eudml.org/doc/250314},
volume = {14},
year = {2008},
}
TY - JOUR
AU - Davini, Cesare
AU - Paroni, Roberto
TI - External approximation of first order variational problems via W-1,p estimates
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2008/1//
PB - EDP Sciences
VL - 14
IS - 4
SP - 802
EP - 824
AB -
Here we present an approximation method for a rather broad class of first order
variational problems in spaces of piece-wise constant functions over
triangulations of the base domain. The convergence of the method is based on an
inequality involving $W^{-1, p}$ norms obtained by Nečas and on the general
framework of Γ-convergence theory.
LA - eng
KW - Numerical methods; non-conforming approximations; Γ-convergence; -convergence; estimates; discontinuous Galerkin method; Necas reverse inequality; convergence; discretized functionals
UR - http://eudml.org/doc/250314
ER -
References
top- B.A. Andreianov, M. Gutnic and P. Wittbold, Convergence of finite volume approximations for a nonlinear elliptic-parabolic problem: a “continuous" approach. SIAM J. Numer. Anal.42 (2004) 228–251.
- D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal.19 (1982) 742–760.
- D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal.39 (2001-2002) 1749–1779.
- J.P. Aubin, Approximation des problèmes aux limites non homogènes pour des opérateurs non linéaires. J. Math. Anal. Appl.30 (1970) 510–521.
- I. Babuška, The finite element method with penalty. Math. Comp.27 (1973) 221–228.
- I. Babuška and M. Zlámal, Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal.10 (1973) 863–875.
- I. Babuška, C.E. Baumann and J.T. Oden, A discontinuous hp finite element method for diffusion problems: 1-D analysis. Comput. Math. Appl.37 (1999) 103–122.
- C.E. Baumann and J.T. Oden, Advances and applications of discontinuous Galerkin methods in CFD. Computational mechanics (Buenos Aires, 1998), Centro Internac. Métodos Numér. Ing., Barcelona (1998).
- C.E. Baumann and J.T. Oden, A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg.175 (1999) 311–341.
- C.E. Baumann and J.T. Oden, An adaptive-order discontinuous Galerkin method for the solution of the Euler equations of gas dynamics. Internat. J. Numer. Methods Engrg.47 (2000) 61–73.
- H. Brezis, Analyse fonctionnelle: Théorie et applications. Masson, Paris (1983).
- P.G. Ciarlet, The finite element method for elliptic problems. North Holland, Amsterdam (1978).
- P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of numerical analysis, P.G. Ciarlet and J.-L. Lions Eds., North Holland, Amsterdam (1991).
- B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal.35 (1998) 2440–2463.
- B. Cockburn, G.E. Karniadakis and C.-W. Shu, The development of discontinuous Galerkin methods, in Discontinuous Galerkin methods (Newport, RI, 1999), Lect. Notes Comput. Sci. Eng.11 (2000) 3–50.
- B. Dacorogna, Direct methods in the calculus of variations. Springer-Verlag, New York (1989).
- G. Dal Maso, An introduction to Γ-convergence. Birkäuser, Boston (1993).
- C. Davini, Piece-wise constant approximations in the membrane problem. Meccanica38 (2003) 555–569.
- C. Davini and F. Jourdan, Approximations of degree zero in the Poisson problem. Comm. Pure Appl. Anal.4 (2005) 267–281.
- C. Davini and R. Paroni, Generalized Hessian and external approximations in variational problems of second order. J. Elasticity70 (2003) 149–174.
- C. Davini and R. Paroni, Error estimate of piece-wise constant approximations to the Poisson problem (in preparation).
- C. Davini and I. Pitacco, Relaxed notions of curvature and a lumped strain method for elastic plates. SIAM J. Numer. Anal.35 (1998) 677–691.
- C. Davini and I. Pitacco, An unconstrained mixed method for the biharmonic problem. SIAM J. Numer. Anal.38 (2000) 820–836.
- L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992).
- J.-L. Lions, Problèmes aux limites non homogènes à données irrégulières : Une méthode d'approximation, in Numerical Analysis of Partial Differential Equations (C.I.M.E. 2 Ciclo, Ispra, 1967), Edizioni Cremonese, Rome (1968) 283–292.
- J. Neas, Équations aux dérivées partielles. Presses de l'Université de Montréal (1965).
- J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg36 (1971) 9–15.
- W.H. Reed and T.R. Hill, Triangular mesh method for neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos (1973).
- M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal.15 (1978) 152–161.
- X. Ye, A new discontinuous finite volume method for elliptic problems. SIAM J. Numer. Anal.42 (2004) 1062–1072.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.