Local minimizers of functionals with multiple volume constraints
Édouard Oudet; Marc Oliver Rieger
ESAIM: Control, Optimisation and Calculus of Variations (2008)
- Volume: 14, Issue: 4, page 780-794
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- E. Acerbi, I. Fonseca and G. Mingione, Existence and regularity for mixtures of micromagnetic materials. Proc. Royal Soc. London Sect. A462 (2006) 2225–2244.
- N. Aguilera, H.W. Alt and L.A. Caffarelli, An optimization problem with volume constraint. SIAM J. Control Optim.24 (1986) 191–198.
- G. Allaire, F. Jouve and A.M. Toader, A level-set method for shape optimization. C. R. Acad. Sci. Paris334 (2002) 1125–1130.
- L. Ambrosio, I. Fonseca, P. Marcellini and L. Tartar, On a volume-constrained variational problem. Arch. Ration. Mech. Anal.149 (1999) 23–47.
- A. Braides, Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications22. Oxford University Press, Oxford (2002).
- D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems65. Birkhäuser Boston (2005).
- G. Dal Maso, An Introduction to Γ-Convergence. Birkhäuser Boston Inc., Boston, MA (1993).
- M.E. Gurtin, D. Polignone and J. Vinals, Two-phase binary fluids and immissible fluids described by an order parameter. Math. Models Methods Appl. Sci.6 (1996) 815–831.
- A. Henrot and M. Pierre, Variation et optimisation de formes, une analyse géométrique48. Springer-Verlag, Paris (2005).
- M. Morini and M.O. Rieger, On a volume constrained variational problem with lower order terms. Appl. Math. Optim.48 (2003) 21–38.
- S. Mosconi and P. Tilli, Variational problems with several volume constraints on the level sets. Calc. Var. Part. Diff. Equ.14 (2002) 233–247.
- S. Osher and F. Santosa, Level set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum. J. Comput. Phys171 (2001) 272–288.
- S. Osher and J.A. Sethian, Front propagation with curvature-dependant speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys.79 (1988) 12–49.
- E. Oudet, Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM: COCV10 (2004) 315–335.
- M.O. Rieger, Abstract variational problems with volume constraints. ESAIM: COCV10 (2004) 84–98.
- M.O. Rieger, Higher dimensional variational problems with volume constraints – existence results and Γ-convergence. Interfaces and Free Boundaries (to appear).
- J. Sokolowski and J.P. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer Series in Computational Mathematics10. Springer (1992).
- P. Vergilius Maro, Aeneidum I. (29–19 BC).