Numerical minimization of eigenmodes of a membrane with respect to the domain

Édouard Oudet

ESAIM: Control, Optimisation and Calculus of Variations (2004)

  • Volume: 10, Issue: 3, page 315-330
  • ISSN: 1292-8119

Abstract

top
In this paper we introduce a numerical approach adapted to the minimization of the eigenmodes of a membrane with respect to the domain. This method is based on the combination of the Level Set method of S. Osher and J.A. Sethian with the relaxed approach. This algorithm enables both changing the topology and working on a fixed regular grid.

How to cite

top

Oudet, Édouard. "Numerical minimization of eigenmodes of a membrane with respect to the domain." ESAIM: Control, Optimisation and Calculus of Variations 10.3 (2004): 315-330. <http://eudml.org/doc/246025>.

@article{Oudet2004,
abstract = {In this paper we introduce a numerical approach adapted to the minimization of the eigenmodes of a membrane with respect to the domain. This method is based on the combination of the Level Set method of S. Osher and J.A. Sethian with the relaxed approach. This algorithm enables both changing the topology and working on a fixed regular grid.},
author = {Oudet, Édouard},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {shape optimization; eigenvalue; level set; relaxation; level set method},
language = {eng},
number = {3},
pages = {315-330},
publisher = {EDP-Sciences},
title = {Numerical minimization of eigenmodes of a membrane with respect to the domain},
url = {http://eudml.org/doc/246025},
volume = {10},
year = {2004},
}

TY - JOUR
AU - Oudet, Édouard
TI - Numerical minimization of eigenmodes of a membrane with respect to the domain
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2004
PB - EDP-Sciences
VL - 10
IS - 3
SP - 315
EP - 330
AB - In this paper we introduce a numerical approach adapted to the minimization of the eigenmodes of a membrane with respect to the domain. This method is based on the combination of the Level Set method of S. Osher and J.A. Sethian with the relaxed approach. This algorithm enables both changing the topology and working on a fixed regular grid.
LA - eng
KW - shape optimization; eigenvalue; level set; relaxation; level set method
UR - http://eudml.org/doc/246025
ER -

References

top
  1. [1] G. Allaire, Shape optimization by the homogenization method. Springer-Verlag, New York (2001). Zbl0990.35001MR1859696
  2. [2] G. Allaire, F. Jouve and A.M. Toader, A level-set method for shape optimization. C. R. Acad. Sci. Paris 334 (2002) 1125-1130. Zbl1115.49306MR1911658
  3. [3] M. Bendsoe, Optimization of structural Topology, Shape and Material. Springer (1995). Zbl0822.73001MR1350791
  4. [4] M. Bendsoe and C. Mota Soares, Topology optimization of structures. Kluwer Academic Press, Dordrechts (1993). MR1250185
  5. [5] G. Buttazzo and G. Dal Maso, An Existence Result for a Class of Shape Optimization Problems. Arch. Ration. Mech. Anal. 122 (1993) 183-195. Zbl0811.49028MR1217590
  6. [6] M.G. Crandall and P.L. Lions, Viscosity Solutions of Hamilton-Jacobi Equations. Trans. Amer. Math. Soc. 277 (1983) 1-43. Zbl0599.35024MR690039
  7. [7] G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Sitz. Ber. Bayer. Akad. Wiss. (1923) 169-172. Zbl49.0342.03JFM49.0342.03
  8. [8] S. Finzi Vita, Constrained shape optimization for Dirichlets problems: discretization via relaxation. Adv. Math. Sci. Appl. 9 (1999) 581-596. Zbl0962.49023MR1725674
  9. [9] H. Hamda, F. Jouve, E. Lutton, M. Schoenauer and M. Sebag, Représentations non structurées en optimisation topologique de formes par algorithmes évolutionnaires. Actes du 32 e Congrès d’Analyse Numérique, Canum. ESAIM Proc. 8 (2000). 
  10. [10] A. Henrot, Minimization problems for eigenvalues of the Laplacian. J. Evol. Eq. 3 (2003) 443-461. Zbl1049.49029MR2019029
  11. [11] A. Henrot and E. Oudet, Le stade ne minimise pas λ 2 parmi les ouverts convexes du plan. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 417-422. Zbl1011.35100MR1826627
  12. [12] A. Henrot and E. Oudet, Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions. Arch. Ration. Mech. Anal. 169 (2003) 73-87. Zbl1055.35080MR1996269
  13. [13] A. Henrot and M. Pierre, Optimisation de forme (in preparation). 
  14. [14] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenshaft des Kreises. Math. Ann. 94 (1925) 97-100. Zbl51.0356.05MR1512244JFM51.0356.05
  15. [15] E. Krahn, Über Minimaleigenshaften der Kugel in drei und mehr Dimensionen. Acta Comm. Univ. Dorpat. A9 (1926) 1-44. Zbl52.0510.03JFM52.0510.03
  16. [16] S. Osher and F. Santosa, Level set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171 (2001) 272-288. Zbl1056.74061MR1843648
  17. [17] S. Osher and J.A. Sethian, Front propagation with curvature-dependant speed: Algorithms based on Hamilton-Jacobi formulations J. Comput. Phys. 79 (1988) 12-49. Zbl0659.65132MR965860
  18. [18] E. Oudet, Q u e l q u e s résultats en optimisation de forme et stabilisation. Prépublication de l’Institut de recherche mathématique avancée, Strasbourg (2002). 
  19. [19] M. Pierre and J.M. Roche, Numerical simulation of tridimensional electromagnetic shaping of liquid metals. Numer. Math. 65 (1993) 203-217. Zbl0792.65096MR1222619
  20. [20] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics. Ann. Math. Stud. 27 (1952). Zbl0044.38301MR43486
  21. [21] J.A. Sethian, Level Set Methods and Fast Marching Methods. Cambridge University Press (1999). Zbl0973.76003MR1700751
  22. [22] J. Sokolowski and J.P. Zolesio, Introduction to shape optimization: shape sensitivity analysis. Springer, Berlin, Springer Ser. Comput. Math. 10 (1992). Zbl0761.73003MR1215733
  23. [23] B.A. Troesch, Elliptical membranes with smallest second eigenvalue. Math. Comp. 27 (1973) 767-772. Zbl0271.35018MR421277
  24. [24] S.A. Wolf and J.B. Keller, Range of the first two eigenvalues of the laplacian. Proc. Roy. Soc. Lond. A 447 (1994) 397-412. Zbl0816.35097MR1312811

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.