Numerical minimization of eigenmodes of a membrane with respect to the domain
ESAIM: Control, Optimisation and Calculus of Variations (2004)
- Volume: 10, Issue: 3, page 315-330
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topOudet, Édouard. "Numerical minimization of eigenmodes of a membrane with respect to the domain." ESAIM: Control, Optimisation and Calculus of Variations 10.3 (2004): 315-330. <http://eudml.org/doc/246025>.
@article{Oudet2004,
abstract = {In this paper we introduce a numerical approach adapted to the minimization of the eigenmodes of a membrane with respect to the domain. This method is based on the combination of the Level Set method of S. Osher and J.A. Sethian with the relaxed approach. This algorithm enables both changing the topology and working on a fixed regular grid.},
author = {Oudet, Édouard},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {shape optimization; eigenvalue; level set; relaxation; level set method},
language = {eng},
number = {3},
pages = {315-330},
publisher = {EDP-Sciences},
title = {Numerical minimization of eigenmodes of a membrane with respect to the domain},
url = {http://eudml.org/doc/246025},
volume = {10},
year = {2004},
}
TY - JOUR
AU - Oudet, Édouard
TI - Numerical minimization of eigenmodes of a membrane with respect to the domain
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2004
PB - EDP-Sciences
VL - 10
IS - 3
SP - 315
EP - 330
AB - In this paper we introduce a numerical approach adapted to the minimization of the eigenmodes of a membrane with respect to the domain. This method is based on the combination of the Level Set method of S. Osher and J.A. Sethian with the relaxed approach. This algorithm enables both changing the topology and working on a fixed regular grid.
LA - eng
KW - shape optimization; eigenvalue; level set; relaxation; level set method
UR - http://eudml.org/doc/246025
ER -
References
top- [1] G. Allaire, Shape optimization by the homogenization method. Springer-Verlag, New York (2001). Zbl0990.35001MR1859696
- [2] G. Allaire, F. Jouve and A.M. Toader, A level-set method for shape optimization. C. R. Acad. Sci. Paris 334 (2002) 1125-1130. Zbl1115.49306MR1911658
- [3] M. Bendsoe, Optimization of structural Topology, Shape and Material. Springer (1995). Zbl0822.73001MR1350791
- [4] M. Bendsoe and C. Mota Soares, Topology optimization of structures. Kluwer Academic Press, Dordrechts (1993). MR1250185
- [5] G. Buttazzo and G. Dal Maso, An Existence Result for a Class of Shape Optimization Problems. Arch. Ration. Mech. Anal. 122 (1993) 183-195. Zbl0811.49028MR1217590
- [6] M.G. Crandall and P.L. Lions, Viscosity Solutions of Hamilton-Jacobi Equations. Trans. Amer. Math. Soc. 277 (1983) 1-43. Zbl0599.35024MR690039
- [7] G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Sitz. Ber. Bayer. Akad. Wiss. (1923) 169-172. Zbl49.0342.03JFM49.0342.03
- [8] S. Finzi Vita, Constrained shape optimization for Dirichlets problems: discretization via relaxation. Adv. Math. Sci. Appl. 9 (1999) 581-596. Zbl0962.49023MR1725674
- [9] H. Hamda, F. Jouve, E. Lutton, M. Schoenauer and M. Sebag, Représentations non structurées en optimisation topologique de formes par algorithmes évolutionnaires. Actes du 32 Congrès d’Analyse Numérique, Canum. ESAIM Proc. 8 (2000).
- [10] A. Henrot, Minimization problems for eigenvalues of the Laplacian. J. Evol. Eq. 3 (2003) 443-461. Zbl1049.49029MR2019029
- [11] A. Henrot and E. Oudet, Le stade ne minimise pas parmi les ouverts convexes du plan. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 417-422. Zbl1011.35100MR1826627
- [12] A. Henrot and E. Oudet, Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions. Arch. Ration. Mech. Anal. 169 (2003) 73-87. Zbl1055.35080MR1996269
- [13] A. Henrot and M. Pierre, Optimisation de forme (in preparation).
- [14] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenshaft des Kreises. Math. Ann. 94 (1925) 97-100. Zbl51.0356.05MR1512244JFM51.0356.05
- [15] E. Krahn, Über Minimaleigenshaften der Kugel in drei und mehr Dimensionen. Acta Comm. Univ. Dorpat. A9 (1926) 1-44. Zbl52.0510.03JFM52.0510.03
- [16] S. Osher and F. Santosa, Level set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171 (2001) 272-288. Zbl1056.74061MR1843648
- [17] S. Osher and J.A. Sethian, Front propagation with curvature-dependant speed: Algorithms based on Hamilton-Jacobi formulations J. Comput. Phys. 79 (1988) 12-49. Zbl0659.65132MR965860
- [18] E. Oudet, résultats en optimisation de forme et stabilisation. Prépublication de l’Institut de recherche mathématique avancée, Strasbourg (2002).
- [19] M. Pierre and J.M. Roche, Numerical simulation of tridimensional electromagnetic shaping of liquid metals. Numer. Math. 65 (1993) 203-217. Zbl0792.65096MR1222619
- [20] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics. Ann. Math. Stud. 27 (1952). Zbl0044.38301MR43486
- [21] J.A. Sethian, Level Set Methods and Fast Marching Methods. Cambridge University Press (1999). Zbl0973.76003MR1700751
- [22] J. Sokolowski and J.P. Zolesio, Introduction to shape optimization: shape sensitivity analysis. Springer, Berlin, Springer Ser. Comput. Math. 10 (1992). Zbl0761.73003MR1215733
- [23] B.A. Troesch, Elliptical membranes with smallest second eigenvalue. Math. Comp. 27 (1973) 767-772. Zbl0271.35018MR421277
- [24] S.A. Wolf and J.B. Keller, Range of the first two eigenvalues of the laplacian. Proc. Roy. Soc. Lond. A 447 (1994) 397-412. Zbl0816.35097MR1312811
Citations in EuDML Documents
top- Pedro Ricardo Simão Antunes, Pedro Freitas, James Bernard Kennedy, Asymptotic behaviour and numerical approximation of optimal eigenvalues of the Robin laplacian
- Davide Buoso, Pier Domenico Lamberti, Eigenvalues of polyharmonic operators on variable domains
- Édouard Oudet, Marc Oliver Rieger, Local minimizers of functionals with multiple volume constraints
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.