When is the orbit algebra of a group an integral domain ? Proof of a conjecture of P.J. Cameron

Maurice Pouzet

RAIRO - Theoretical Informatics and Applications (2008)

  • Volume: 42, Issue: 1, page 83-103
  • ISSN: 0988-3754

Abstract

top
Cameron introduced the orbit algebra of a permutation group and conjectured that this algebra is an integral domain if and only if the group has no finite orbit. We prove that this conjecture holds and in fact that the age algebra of a relational structure R is an integral domain if and only if R is age-inexhaustible. We deduce these results from a combinatorial lemma asserting that if a product of two non-zero elements of a set algebra is zero then there is a finite common tranversal of their supports. The proof is built on Ramsey theorem and the integrity of a shuffle algebra.

How to cite

top

Pouzet, Maurice. "When is the orbit algebra of a group an integral domain ? Proof of a conjecture of P.J. Cameron." RAIRO - Theoretical Informatics and Applications 42.1 (2008): 83-103. <http://eudml.org/doc/250356>.

@article{Pouzet2008,
abstract = { Cameron introduced the orbit algebra of a permutation group and conjectured that this algebra is an integral domain if and only if the group has no finite orbit. We prove that this conjecture holds and in fact that the age algebra of a relational structure R is an integral domain if and only if R is age-inexhaustible. We deduce these results from a combinatorial lemma asserting that if a product of two non-zero elements of a set algebra is zero then there is a finite common tranversal of their supports. The proof is built on Ramsey theorem and the integrity of a shuffle algebra. },
author = {Pouzet, Maurice},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Relational structures; ages; counting functions; oligomorphic groups; age algebra; Ramsey theorem; integral domain; orbit algebra; permutation group; relational structure; enumeration of finite substructures},
language = {eng},
month = {1},
number = {1},
pages = {83-103},
publisher = {EDP Sciences},
title = {When is the orbit algebra of a group an integral domain ? Proof of a conjecture of P.J. Cameron},
url = {http://eudml.org/doc/250356},
volume = {42},
year = {2008},
}

TY - JOUR
AU - Pouzet, Maurice
TI - When is the orbit algebra of a group an integral domain ? Proof of a conjecture of P.J. Cameron
JO - RAIRO - Theoretical Informatics and Applications
DA - 2008/1//
PB - EDP Sciences
VL - 42
IS - 1
SP - 83
EP - 103
AB - Cameron introduced the orbit algebra of a permutation group and conjectured that this algebra is an integral domain if and only if the group has no finite orbit. We prove that this conjecture holds and in fact that the age algebra of a relational structure R is an integral domain if and only if R is age-inexhaustible. We deduce these results from a combinatorial lemma asserting that if a product of two non-zero elements of a set algebra is zero then there is a finite common tranversal of their supports. The proof is built on Ramsey theorem and the integrity of a shuffle algebra.
LA - eng
KW - Relational structures; ages; counting functions; oligomorphic groups; age algebra; Ramsey theorem; integral domain; orbit algebra; permutation group; relational structure; enumeration of finite substructures
UR - http://eudml.org/doc/250356
ER -

References

top
  1. J. Berstel and C. Retenauer, Les séries rationnelles et leurs langages. Études et recherches en Informatique. Masson, Paris (1984) p. 132.  
  2. N. Bourbaki, Éléments de mathématiques, Fasc. XI. Algèbre, Chap. V. Actualités scientifiques et industrielles, Hermann, Paris (1973).  
  3. P.J. Cameron, Transitivity of permutation groups on unordered sets. Math. Z.48 (1976) 127–139.  
  4. P.J. Cameron, Orbits of permutation groups on unordered sets. II. J. London Math. Soc.23 (1981) 249–264.  
  5. P.J. Cameron, Oligomorphic permutation groups. Cambridge University Press, Cambridge (1990).  
  6. P.J. Cameron, The algebra of an age, in Model theory of groups and automorphism groups (Blaubeuren, 1995). Cambridge University Press, Cambridge (1997) 126–133.  
  7. P.J. Cameron, On an algebra related to orbit-counting. J. Group Theory1 (1998) 173–179.  
  8. P.J. Cameron, Sequences realized by oligomorphic permutation groups. J. Integer Seq.3 Article 00.1.5, 1 HTML document (electronic) (2000).  
  9. P.J. Cameron, Some counting problems related to permutation groups. Discrete Math.225 (2000) 77–92. Formal power series and algebraic combinatorics (Toronto, ON, 1998).  
  10. P.J. Cameron, Problems on permutation groups,  URIhttp://www.maths.qmul.ac.uk/~pjc/pgprob.html
  11. R. Diestel, Graph Theory. Springer-Verlag, Heidelberg. Grad. Texts Math. 173 (2005) 431.  
  12. R. Fraïssé, Cours de logique mathématique. Tome 1: Relation et formule logique. Gauthier-Villars Éditeur, Paris (1971).  
  13. R. Fraïssé, Theory of relations. North-Holland Publishing Co., Amsterdam (2000).  
  14. R. Fraïssé and M. Pouzet, Interprétabilité d'une relation pour une chaîne. C. R. Acad. Sci. Paris Sér. A272 (1971) 1624–1627.  
  15. D.H. Gottlieb, A class of incidence matrices. Proc. Amer. Math. Soc.17 (1966) 1233–1237.  
  16. R. Graham, B. Rothschild and J.H. Spencer, Ramsey Theory. John Wiley and Sons, NY (1990).  
  17. G. Higman, Ordering by divisibility in abstract algebras. Proc. London Math. Soc.2 (1952) 326–336.  
  18. W. Hodges, Model Theory. Cambridge University Press, Cambridge (1993) 772.  
  19. W.M. Kantor, On incidence matrices of finite projective and affine spaces. Math. Z.124 (1972) 315–318.  
  20. D. Livingstone and A. Wagner, Transitivity of finite permutation groups on unordered sets. Math. Z.90 (1965) 393–403.  
  21. M. Lothaire, Combinatorics on words. Encyclopedia of Mathematics and its Applications 17. Addison-Wesley, Reading, Mass. Reprinted in the Cambridge Mathematical Library, Cambridge University Press, U.K. (1997).  
  22. H.D. Macpherson, Growth rates in infinite graphs and permutation groups. Proc. London Math. Soc.51 (1985) 285–294.  
  23. M. Pouzet, Application d'une propriété combinatoire des parties d'un ensemble aux groupes et aux relations. Math. Z.150 (1976) 117–134.  
  24. M. Pouzet, Sur la théorie des relations. Thèse de doctorat d'État, Université Claude-Bernard, Lyon 1 (1978).  
  25. M. Pouzet, Relation minimale pour son âge. Z. Math. Logik Grundlag. Math.25 (1979) 315–344.  
  26. M. Pouzet, Application de la notion de relation presque-enchaînable au dénombrement des restrictions finies d'une relation. Z. Math. Logik Grundlag. Math.27 (1981) 289–332.  
  27. M. Pouzet, Relation impartible. Dissertationnes103 (1981) 1–48.  
  28. M. Pouzet, The profile of relations. Glob. J. Pure Appl. Math. 2 (2006) 237–272 (Proceedings of the 14th Symposium of the Tunisian Mathematical Society held in Hammamet, March 20–23, 2006).  
  29. M. Pouzet and M. Sobrani, Sandwiches of ages. Ann. Pure Appl. Logic108 (2001) 295–326.  
  30. M. Pouzet and N. Thiéry, Some relational structures with polynomial growth and their associated algebras. May 10th (2005), p. 19, presented at FPSAC for the 75 birthday of A. Garsia. v1 [math.CO]  URIarXiv:math/0601256
  31. D.E. Radford, A natural ring basis for the shuffle algebra and an application to group schemes. J. Algebra58 (1979) 432–454.  
  32. F.P. Ramsey, On a problem of formal logic. Proc. London Math. Soc.30 (1930) 264–286.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.