### A few Remarks on n-infinite Forcing Companions

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Suppose t = (T,T₁,p) is a triple of two countable theories T ⊆ T₁ in vocabularies τ ⊂ τ₁ and a τ₁-type p over the empty set. We show that the Hanf number for the property ’there is a model M₁ of T₁ which omits p, but M₁ ↾ τ is saturated’ is essentially equal to the Löwenheim number of second order logic. In Section 4 we make exact computations of these Hanf numbers and note some distinctions between ’first order’ and ’second order quantification’. In particular, we show that if κ is uncountable,...

Moore [Fund. Math. 220 (2013)] characterizes the amenability of the automorphism groups of countable ultrahomogeneous structures by a Ramsey-type property. We extend this result to the automorphism groups of metric Fraïssé structures, which encompass all Polish groups. As an application, we prove that amenability is a ${G}_{\delta}$ condition.

We assume a theory T in the logic ${L}_{\kappa \omega}$ is categorical in a cardinal λ κ, and κ is a measurable cardinal. We prove that the class of models of T of cardinality < λ (but ≥ |T|+κ) has the amalgamation property; this is a step toward understanding the character of such classes of models.

We introduce the notion of leveled structure and show that every structure elementarily equivalent to the real expo field expanded by all restricted analytic functions is leveled.

We define an abstract setting suitable for investigating perturbations of metric structures generalizing the notion of a metric abstract elementary class. We show how perturbation of Hilbert spaces with an automorphism and atomic Nakano spaces with bounded exponent fit into this framework, where the perturbations are built into the definition of the class being investigated. Further, assuming homogeneity and some other properties true in the example classes, we develop a notion of independence for...