A discrete kinetic approximation for the incompressible Navier-Stokes equations
Maria Francesca Carfora; Roberto Natalini
ESAIM: Mathematical Modelling and Numerical Analysis (2008)
- Volume: 42, Issue: 1, page 93-112
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topCarfora, Maria Francesca, and Natalini, Roberto. "A discrete kinetic approximation for the incompressible Navier-Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis 42.1 (2008): 93-112. <http://eudml.org/doc/250377>.
@article{Carfora2008,
abstract = {
In this paper we introduce a new class of numerical schemes for the incompressible Navier-Stokes equations, which are
inspired by the theory of discrete kinetic schemes for compressible fluids. For these approximations it is possible to give
a stability condition, based on a discrete velocities version of the Boltzmann H-theorem. Numerical tests are performed to
investigate their convergence and accuracy.
},
author = {Carfora, Maria Francesca, Natalini, Roberto},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Incompressible fluids; kinetic schemes; BGK models; finite difference schemes.; BGK model; finite difference scheme; Boltzmann H-theorem; convergence},
language = {eng},
month = {1},
number = {1},
pages = {93-112},
publisher = {EDP Sciences},
title = {A discrete kinetic approximation for the incompressible Navier-Stokes equations},
url = {http://eudml.org/doc/250377},
volume = {42},
year = {2008},
}
TY - JOUR
AU - Carfora, Maria Francesca
AU - Natalini, Roberto
TI - A discrete kinetic approximation for the incompressible Navier-Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2008/1//
PB - EDP Sciences
VL - 42
IS - 1
SP - 93
EP - 112
AB -
In this paper we introduce a new class of numerical schemes for the incompressible Navier-Stokes equations, which are
inspired by the theory of discrete kinetic schemes for compressible fluids. For these approximations it is possible to give
a stability condition, based on a discrete velocities version of the Boltzmann H-theorem. Numerical tests are performed to
investigate their convergence and accuracy.
LA - eng
KW - Incompressible fluids; kinetic schemes; BGK models; finite difference schemes.; BGK model; finite difference scheme; Boltzmann H-theorem; convergence
UR - http://eudml.org/doc/250377
ER -
References
top- D. Aregba-Driollet and R. Natalini, Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal.37 (2000) 1973–2004.
- D. Aregba-Driollet, R. Natalini and S. Tang, Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems. Math. Comp.73 (2004) 63–94.
- M.K. Banda, A. Klar, L. Pareschi and M. Seaid, Compressible and incompressible limits for hyperbolic systems with relaxation. J. Comput. Appl. Math.168 (2004) 41–52.
- S. Bianchini, Hyperbolic limit of the Jin-Xin relaxation model. Comm. Pure Appl. Math.59 (2006) 688–753.
- Y. Brenier, R. Natalini and M. Puel, On a relaxation approximation of the incompressible Navier-Stokes equations. Proc. Amer. Math. Soc.132 (2004) 1021–1028.
- B.M. Boghosian, P.J. Love, P.V. Coveney, I.V. Karlin, S. Succi and J. Yepez, Galilean-invariant Lattice-Boltzmann models with H theorem. Phys. Rev. E68 (2003) 25103–25106.
- F. Bouchut, Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Statist. Phys.95 (1999) 113–170.
- F. Bouchut, Entropy satisfying flux vector splittings and kinetic BGK models. Numer. Math.94 (2003) 623–672.
- F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources, Frontiers in Mathematics series. Birkhäuser (2004).
- A.J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comput.22 (1968) 745–762.
- D. Donatelli and P. Marcati, Convergence of singular limits for multi-D semilinear hyperbolic systems to parabolic systems. Trans. Amer. Math. Soc.356 (2004) 2093–2121.
- W. E and J.G. Liu, Projection method. I. Convergence and numerical boundary layers. SIAM J. Numer. Anal.32 (1995) 1017–1057; Projection method. II. Godunov-Ryabenki analysis. SIAM J. Numer. Anal.33 (1996) 1597–1621.
- T.Y. Hou and B.T.R. Wetton, Second-order convergence of a projection scheme for the incompressible Navier-Stokes equations with boundaries. SIAM J. Numer. Anal.30 (1993) 609–629.
- M. Junk, Kinetic schemes in the case of low Mach numbers. J. Comput. Phys.151 (1999) 947–968.
- M. Junk and A. Klar, Discretization for the incompressible Navier-Stokes equations based on the Lattice Boltzmann method. SIAM J. Sci. Comp.22 (2000) 1–19.
- M. Junk and W.A. Yong, Rigorous Navier-Stokes limit of the Lattice Boltzmann equation. Asymptot. Anal.35 (2003) 165–185.
- J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes. J. Comput. Phys.59 (1985) 308–323.
- R. Natalini, A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws. J. Diff. Equation148 (1998) 292–317.
- R. Natalini and F. Rousset, Convergence of a singular Euler-Poisson approximation of the incompressible Navier-Stokes equations. Proc. Am. Math. Soc.134 (2006) 2251–2258.
- B. Perthame, Kinetic formulation of conservation laws, Oxford Lecture Series in Mathematics and its Applications21. Oxford University Press, Oxford (2002).
- M. Reider and J. Sterling, Accuracy of discrete velocity BGK models for the simulation of the incompressible Navier-Stokes equations. Comput. Fluids24 (1995) 459–467.
- S. Succi, The Lattice Boltzmann Equation. Oxford University Press, Oxford (2001).
- R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. I. Arch. Ration. Mech. Anal.32 (1969) 135–153; Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II. Arch. Ration. Mech. Anal.33 (1969) 377–385.
- B.R. Wetton, Analysis of the spatial error for a class of finite difference methods for viscous incompressible flow. SIAM J. Numer. Anal.34 (1997) 723–755; Error analysis for Chorin's original fully discrete projection method and regularizations in space and time. SIAM J. Numer. Anal.34 (1997) 1683–1697.
- D.A. Wolf-Gladrow, Lattice-gas cellular automata and Lattice Boltzmann models. An introduction, Lecture Notes in Mathematics1725. Springer-Verlag, Berlin (2000).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.