A discrete kinetic approximation for the incompressible Navier-Stokes equations

Maria Francesca Carfora; Roberto Natalini

ESAIM: Mathematical Modelling and Numerical Analysis (2008)

  • Volume: 42, Issue: 1, page 93-112
  • ISSN: 0764-583X

Abstract

top
In this paper we introduce a new class of numerical schemes for the incompressible Navier-Stokes equations, which are inspired by the theory of discrete kinetic schemes for compressible fluids. For these approximations it is possible to give a stability condition, based on a discrete velocities version of the Boltzmann H-theorem. Numerical tests are performed to investigate their convergence and accuracy.

How to cite

top

Carfora, Maria Francesca, and Natalini, Roberto. "A discrete kinetic approximation for the incompressible Navier-Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis 42.1 (2008): 93-112. <http://eudml.org/doc/250377>.

@article{Carfora2008,
abstract = { In this paper we introduce a new class of numerical schemes for the incompressible Navier-Stokes equations, which are inspired by the theory of discrete kinetic schemes for compressible fluids. For these approximations it is possible to give a stability condition, based on a discrete velocities version of the Boltzmann H-theorem. Numerical tests are performed to investigate their convergence and accuracy. },
author = {Carfora, Maria Francesca, Natalini, Roberto},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Incompressible fluids; kinetic schemes; BGK models; finite difference schemes.; BGK model; finite difference scheme; Boltzmann H-theorem; convergence},
language = {eng},
month = {1},
number = {1},
pages = {93-112},
publisher = {EDP Sciences},
title = {A discrete kinetic approximation for the incompressible Navier-Stokes equations},
url = {http://eudml.org/doc/250377},
volume = {42},
year = {2008},
}

TY - JOUR
AU - Carfora, Maria Francesca
AU - Natalini, Roberto
TI - A discrete kinetic approximation for the incompressible Navier-Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2008/1//
PB - EDP Sciences
VL - 42
IS - 1
SP - 93
EP - 112
AB - In this paper we introduce a new class of numerical schemes for the incompressible Navier-Stokes equations, which are inspired by the theory of discrete kinetic schemes for compressible fluids. For these approximations it is possible to give a stability condition, based on a discrete velocities version of the Boltzmann H-theorem. Numerical tests are performed to investigate their convergence and accuracy.
LA - eng
KW - Incompressible fluids; kinetic schemes; BGK models; finite difference schemes.; BGK model; finite difference scheme; Boltzmann H-theorem; convergence
UR - http://eudml.org/doc/250377
ER -

References

top
  1. D. Aregba-Driollet and R. Natalini, Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal.37 (2000) 1973–2004.  
  2. D. Aregba-Driollet, R. Natalini and S. Tang, Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems. Math. Comp.73 (2004) 63–94.  
  3. M.K. Banda, A. Klar, L. Pareschi and M. Seaid, Compressible and incompressible limits for hyperbolic systems with relaxation. J. Comput. Appl. Math.168 (2004) 41–52.  
  4. S. Bianchini, Hyperbolic limit of the Jin-Xin relaxation model. Comm. Pure Appl. Math.59 (2006) 688–753.  
  5. Y. Brenier, R. Natalini and M. Puel, On a relaxation approximation of the incompressible Navier-Stokes equations. Proc. Amer. Math. Soc.132 (2004) 1021–1028.  
  6. B.M. Boghosian, P.J. Love, P.V. Coveney, I.V. Karlin, S. Succi and J. Yepez, Galilean-invariant Lattice-Boltzmann models with H theorem. Phys. Rev. E68 (2003) 25103–25106.  
  7. F. Bouchut, Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Statist. Phys.95 (1999) 113–170.  
  8. F. Bouchut, Entropy satisfying flux vector splittings and kinetic BGK models. Numer. Math.94 (2003) 623–672.  
  9. F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources, Frontiers in Mathematics series. Birkhäuser (2004).  
  10. A.J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comput.22 (1968) 745–762.  
  11. D. Donatelli and P. Marcati, Convergence of singular limits for multi-D semilinear hyperbolic systems to parabolic systems. Trans. Amer. Math. Soc.356 (2004) 2093–2121.  
  12. W. E and J.G. Liu, Projection method. I. Convergence and numerical boundary layers. SIAM J. Numer. Anal.32 (1995) 1017–1057; Projection method. II. Godunov-Ryabenki analysis. SIAM J. Numer. Anal.33 (1996) 1597–1621.  
  13. T.Y. Hou and B.T.R. Wetton, Second-order convergence of a projection scheme for the incompressible Navier-Stokes equations with boundaries. SIAM J. Numer. Anal.30 (1993) 609–629.  
  14. M. Junk, Kinetic schemes in the case of low Mach numbers. J. Comput. Phys.151 (1999) 947–968.  
  15. M. Junk and A. Klar, Discretization for the incompressible Navier-Stokes equations based on the Lattice Boltzmann method. SIAM J. Sci. Comp.22 (2000) 1–19.  
  16. M. Junk and W.A. Yong, Rigorous Navier-Stokes limit of the Lattice Boltzmann equation. Asymptot. Anal.35 (2003) 165–185.  
  17. J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes. J. Comput. Phys.59 (1985) 308–323.  
  18. R. Natalini, A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws. J. Diff. Equation148 (1998) 292–317.  
  19. R. Natalini and F. Rousset, Convergence of a singular Euler-Poisson approximation of the incompressible Navier-Stokes equations. Proc. Am. Math. Soc.134 (2006) 2251–2258.  
  20. B. Perthame, Kinetic formulation of conservation laws, Oxford Lecture Series in Mathematics and its Applications21. Oxford University Press, Oxford (2002).  
  21. M. Reider and J. Sterling, Accuracy of discrete velocity BGK models for the simulation of the incompressible Navier-Stokes equations. Comput. Fluids24 (1995) 459–467.  
  22. S. Succi, The Lattice Boltzmann Equation. Oxford University Press, Oxford (2001).  
  23. R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. I. Arch. Ration. Mech. Anal.32 (1969) 135–153; Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II. Arch. Ration. Mech. Anal.33 (1969) 377–385.  
  24. B.R. Wetton, Analysis of the spatial error for a class of finite difference methods for viscous incompressible flow. SIAM J. Numer. Anal.34 (1997) 723–755; Error analysis for Chorin's original fully discrete projection method and regularizations in space and time. SIAM J. Numer. Anal.34 (1997) 1683–1697.  
  25. D.A. Wolf-Gladrow, Lattice-gas cellular automata and Lattice Boltzmann models. An introduction, Lecture Notes in Mathematics1725. Springer-Verlag, Berlin (2000).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.