A logarithm barrier method for semi-definite programming
Jean-Pierre Crouzeix; Bachir Merikhi
RAIRO - Operations Research (2008)
- Volume: 42, Issue: 2, page 123-139
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topCrouzeix, Jean-Pierre, and Merikhi, Bachir. "A logarithm barrier method for semi-definite programming." RAIRO - Operations Research 42.2 (2008): 123-139. <http://eudml.org/doc/250394>.
@article{Crouzeix2008,
abstract = {
This paper presents a logarithmic barrier method for solving a semi-definite linear program. The descent direction is the classical Newton direction. We propose alternative ways to determine the step-size along the direction which are more efficient than classical line-searches.
},
author = {Crouzeix, Jean-Pierre, Merikhi, Bachir},
journal = {RAIRO - Operations Research},
keywords = {Linear semi-definite programming; barrier methods; line-search.; linear semi-definite programming; line-search},
language = {eng},
month = {5},
number = {2},
pages = {123-139},
publisher = {EDP Sciences},
title = {A logarithm barrier method for semi-definite programming},
url = {http://eudml.org/doc/250394},
volume = {42},
year = {2008},
}
TY - JOUR
AU - Crouzeix, Jean-Pierre
AU - Merikhi, Bachir
TI - A logarithm barrier method for semi-definite programming
JO - RAIRO - Operations Research
DA - 2008/5//
PB - EDP Sciences
VL - 42
IS - 2
SP - 123
EP - 139
AB -
This paper presents a logarithmic barrier method for solving a semi-definite linear program. The descent direction is the classical Newton direction. We propose alternative ways to determine the step-size along the direction which are more efficient than classical line-searches.
LA - eng
KW - Linear semi-definite programming; barrier methods; line-search.; linear semi-definite programming; line-search
UR - http://eudml.org/doc/250394
ER -
References
top- F. Alizadeh, Interior point methods in semi-definite programming with application to combinatorial optimization. SIAM J. Optim.5 (1995) 13–55.
- F. Alizadeh, J.-P. Haberly, and M.-L. Overton, Primal-dual interior-point methods for semi-definite programming, convergence rates, stability and numerical results. SIAM J. Optim.8 (1998) 746–768.
- D. Benterki, J.-P. Crouzeix, and B. Merikhi, A numerical implementation of an interior point method for semi-definite programming. Pesquisa Operacional23–1 (2003) 49–59.
- J.-F. Bonnans, J.-C. Gilbert, C. Lemaréchal, and C. Sagastizàbal, Numerical optimization, theoretical and practical aspects. Mathematics and Applications27, Springer-Verlag, Berlin (2003).
- J.-P. Crouzeix and A. Seeger, New bounds for the extreme values of a finite sample of real numbers. J. Math. Anal. Appl.197 (1996) 411–426.
- M. Kojima, S. Shindoh, and S. Hara, Interior point methods for the monotone semi-definite linear complementarity problem in symmetric matrices. SIAM J. Optim.7 (1997) 86–125.
- M. Overton and H. Wolkowicz, Semi-definite programming. Math. program. Serie B77 (1997) 105–109.
- R.T. Rockafellar, Convex analysis. Princeton University Press, New Jerzey (1970).
- L. Vanderberghe and S. Boyd, Positive definite programming. SIAM Review38 (1996) 49–95.
- H. Wolkowicz and G.-P.-H. Styan, Bounds for eigenvalues using traces. Linear Algebra Appl.29 (1980) 471–506.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.