Two-points boundary value problems for Carathéodory second order equations
Archivum Mathematicum (2008)
- Volume: 044, Issue: 2, page 93-103
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topTaddei, Valentina. "Two-points boundary value problems for Carathéodory second order equations." Archivum Mathematicum 044.2 (2008): 93-103. <http://eudml.org/doc/250435>.
@article{Taddei2008,
abstract = {Using a suitable version of Mawhin’s continuation principle, we obtain an existence result for the Floquet boundary value problem for second order Carathéodory differential equations by means of strictly localized $ C^2 $ bounding functions.},
author = {Taddei, Valentina},
journal = {Archivum Mathematicum},
keywords = {continuation principle; coincidence degree; second order differential systems; bound sets; Floquet type boundary conditions; continuation principle; coincidence degree; second order differential system; bound set; Floquet type boundary condition},
language = {eng},
number = {2},
pages = {93-103},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Two-points boundary value problems for Carathéodory second order equations},
url = {http://eudml.org/doc/250435},
volume = {044},
year = {2008},
}
TY - JOUR
AU - Taddei, Valentina
TI - Two-points boundary value problems for Carathéodory second order equations
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 2
SP - 93
EP - 103
AB - Using a suitable version of Mawhin’s continuation principle, we obtain an existence result for the Floquet boundary value problem for second order Carathéodory differential equations by means of strictly localized $ C^2 $ bounding functions.
LA - eng
KW - continuation principle; coincidence degree; second order differential systems; bound sets; Floquet type boundary conditions; continuation principle; coincidence degree; second order differential system; bound set; Floquet type boundary condition
UR - http://eudml.org/doc/250435
ER -
References
top- Andres, J., Malaguti, L., Taddei, V., 10.1155/S108533750321006X, Abstr. Appl. Anal. 9 (2003), 547–571. (2003) Zbl1036.34011MR1981485DOI10.1155/S108533750321006X
- Andres, J., Malaguti, L., Taddei, V., A bounding function approach to multivalued boundary values problems, Set-valued Methods in Dynamic Systems, Special Issue of Dynam. Systems Appl. 16 (2007), 37–48. (2007) MR2305427
- Erbe, L., Palamides, P. K., 10.1016/0022-247X(87)90141-7, J. Math. Anal. Appl. 127 (1) (1987), 80–92. (1987) Zbl0635.34017MR0904211DOI10.1016/0022-247X(87)90141-7
- Erbe, L., Schmitt, K., Boundary value problems for second order differential equations, Nonlinear Anal. Appl., Proc. 7th Int. Conf. (Arlington 1986), Lect. Notes Pure Appl. Math. 109 (1987), 179–184. (1987) Zbl0636.34012MR0912292
- Gaines, R .E., Mawhin, J., Coincidence degree and nonlinear differential equations, Lectures Notes in Math., Springer–Verlag, Berlin 586 (1977). (1977) Zbl0339.47031MR0637067
- Hartman, P., Ordinary Differential Equations, Wiley-Interscience, New York, 1969. (1969) MR0419901
- Lloyd, N. G., Degree Theory, Cambridge University Press, Cambridge, 1978. (1978) Zbl0367.47001MR0493564
- Mawhin, J., 10.1016/0022-0396(74)90013-8, J. Differential Equations 16 (1974), 257–269. (1974) Zbl0301.34019MR0361250DOI10.1016/0022-0396(74)90013-8
- Mawhin, J., The Bernstein-Nagumo problem and two-point boundary value problem for ordinary differential equations, Qualitative theory of differential equations, Colloq. Math. Soc. János Bolyai, Szeged 30 II (1979), 709–740. (1979) MR0680616
- Mawhin, J., Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Series, Amer. Math. Soc., Providence, RI 40 (1979). (1979) Zbl0414.34025MR0525202
- Mawhin, J., Thompson, H. B., 10.1023/B:JODY.0000009739.00640.44, J. Dynam. Differential Equations 15 (2-3) (2003), 327–334. (2003) Zbl1055.34035MR2046722DOI10.1023/B:JODY.0000009739.00640.44
- Mawhin, J., Ward Jr., J. R., Guiding-like functions for periodic or bounded solutions of ordinary differential equations, Discrete Contin. Dynam. Systems 8 (1) (2002), 39–54. (2002) Zbl1087.34518MR1877827
- Scorza Dragoni, G., Intorno a un criterio di esistenza per un problema di valori ai limiti, Rend. Accad. Naz. Lincei 28 (6) (1938), 317–325. (1938)
- Taddei, V., Zanolin, F., Bound sets and two-points boundary value problems for second order differential equations, Georg. Math. J., Special issue dedicated to 70th birthday of Prof. I. Kiguradze 14 (2) (2007). (2007) MR2341286
- Thompson, H. B., 10.1007/BF02844736, Rend. Circ. Mat. Palermo (2) 35 (2) (1986), 261–275. (1986) Zbl0608.34018MR0892085DOI10.1007/BF02844736
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.