Bound sets and two-point boundary value problems for second order differential systems
Jean Mawhin; Katarzyna Szymańska-Dębowska
Mathematica Bohemica (2019)
- Volume: 144, Issue: 4, page 373-392
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMawhin, Jean, and Szymańska-Dębowska, Katarzyna. "Bound sets and two-point boundary value problems for second order differential systems." Mathematica Bohemica 144.4 (2019): 373-392. <http://eudml.org/doc/294674>.
@article{Mawhin2019,
abstract = {The solvability of second order differential systems with the classical separated or periodic boundary conditions is considered. The proofs use special classes of curvature bound sets or bound sets together with the simplest version of the Leray-Schauder continuation theorem. The special cases where the bound set is a ball, a parallelotope or a bounded convex set are considered.},
author = {Mawhin, Jean, Szymańska-Dębowska, Katarzyna},
journal = {Mathematica Bohemica},
keywords = {two-point boundary value problem; curvature bound set; Leray-Schauder theorem; Bernstein-Hartman condition},
language = {eng},
number = {4},
pages = {373-392},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bound sets and two-point boundary value problems for second order differential systems},
url = {http://eudml.org/doc/294674},
volume = {144},
year = {2019},
}
TY - JOUR
AU - Mawhin, Jean
AU - Szymańska-Dębowska, Katarzyna
TI - Bound sets and two-point boundary value problems for second order differential systems
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 4
SP - 373
EP - 392
AB - The solvability of second order differential systems with the classical separated or periodic boundary conditions is considered. The proofs use special classes of curvature bound sets or bound sets together with the simplest version of the Leray-Schauder continuation theorem. The special cases where the bound set is a ball, a parallelotope or a bounded convex set are considered.
LA - eng
KW - two-point boundary value problem; curvature bound set; Leray-Schauder theorem; Bernstein-Hartman condition
UR - http://eudml.org/doc/294674
ER -
References
top- Amster, P., Haddad, J., A Hartman-Nagumo type condition for a class of contractible domains, Topol. Methods Nonlinear Anal. 41 (2013), 287-304. (2013) Zbl1306.34033MR3114309
- Bass, R. W., 10.1515/9781400881758-011, Contributions to the Theory of Nonlinear Oscillations, Volume IV. Annals of Mathematics Studies 41. Princeton University Press, Princeton (1958), 201-211 S. Lefschetz. (1958) Zbl0083.31405MR0100704DOI10.1515/9781400881758-011
- Bebernes, J. W., 10.2307/2039687, Proc. Am. Math. Soc. 42 (1974), 121-127. (1974) Zbl0286.34055MR0330597DOI10.2307/2039687
- Bernstein, S. N., 10.24033/asens.651, Ann. Sci. Éc. Norm. Supér., Sér. III. 29 (1912), 431-485 French 9999JFM99999 43.0460.01. (1912) MR1509153DOI10.24033/asens.651
- Coster, C. De, Habets, P., 10.1016/s0076-5392(06)x8055-4, Mathematics in Science and Engineering 205. Elsevier, Amsterdam (2006). (2006) Zbl1330.34009MR2225284DOI10.1016/s0076-5392(06)x8055-4
- Fabry, C., 10.1016/0022-247x(85)90358-0, J. Math. Anal. Appl. 107 (1985), 132-143. (1985) Zbl0604.34002MR0786017DOI10.1016/0022-247x(85)90358-0
- Fewster-Young, N., 10.12732/ijdea.v14i3.2215, Int. J. Differ. Equ. Appl. 14 (2015), 195-228. (2015) Zbl1337.34024MR3621238DOI10.12732/ijdea.v14i3.2215
- Fewster-Young, N., 10.14232/ejqtde.2016.1.17, Electron. J. Qual. Theory Differ. Equ. (2016), 1-15. (2016) Zbl1363.34067MR3487646DOI10.14232/ejqtde.2016.1.17
- Frigon, M., 10.12775/tmna.1993.019, Topol. Methods Nonlinear Anal. 1 (1993), 259-274. (1993) Zbl0790.34022MR1233095DOI10.12775/tmna.1993.019
- Frigon, M., Boundary and periodic value problems for systems of differential equations under Bernstein-Nagumo growth condition, Differ. Integral Equ. 8 (1995), 1789-1804. (1995) Zbl0831.34021MR1347980
- Gaines, R. E., Mawhin, J. L., 10.1007/BFb0089537, Lecture Notes in Mathematics 568. Springer, Cham (1977). (1977) Zbl0339.47031MR0637067DOI10.1007/BFb0089537
- Hartman, P., 10.2307/1993537, Trans. Am. Math. Soc. 96 (1960), 493-509. (1960) Zbl0098.06101MR0124553DOI10.2307/1993537
- Hartman, P., Ordinary Differential Equations, John Wiley & Sons, New York (1964). (1964) Zbl0125.32102MR0171038
- Heinz, E., 10.1007/BF02937346, J. Anal. Math. 5 (1956/1957), 197-272. (1956) Zbl0085.08701MR0136852DOI10.1007/BF02937346
- Henderson, J., Sheng, Q., Tisdell, C. C., 10.7153/dea-09-05, Differ. Equ. Appl. 9 (2017), 57-68. (2017) Zbl1365.34043MR3610874DOI10.7153/dea-09-05
- Hiriart-Urruty, J.-B., Lemaréchal, C., 10.1007/978-3-662-02796-7, Grundlehren der mathematischen Wissenschaften 305. Springer, Berlin (1993). (1993) Zbl0795.49001MR1261420DOI10.1007/978-3-662-02796-7
- Knobloch, H.-W., 10.1016/0022-0396(70)90154-3, J. Differ. Equations 9 (1971), 67-85. (1971) Zbl0211.11801MR0277824DOI10.1016/0022-0396(70)90154-3
- Leray, J., Schauder, J., 10.24033/asens.836, Ann. Sci. Éc. Norm. Supér., Sér. III. 51 (1934), 45-78 French. (1934) Zbl0009.07301MR1509338DOI10.24033/asens.836
- Mawhin, J., 10.1090/cbms/040, CBMS Regional Conference Series in Mathematics 40. AMS, Providence (1979). (1979) Zbl0414.34025MR0525202DOI10.1090/cbms/040
- Mawhin, J., 10.1515/ans-2013-0112, Adv. Nonlinear Stud. 13 (2013), 209-217. (2013) Zbl1278.55004MR3058216DOI10.1515/ans-2013-0112
- Mawhin, J., Szymańska-Dębowska, K., 10.1090/proc/13569, Proc. Am. Math. Soc. 145 (2017), 2023-2032. (2017) Zbl1393.34035MR3611317DOI10.1090/proc/13569
- Nagumo, M., Über die Differentialgleichung , Proc. Phys.-Math. Soc. Japan, III. Ser. 19 (1937), 861-866 German. (1937) Zbl0017.30801
- Opial, Z., 10.4064/ap-10-1-73-79, Ann. Polon. Math. 10 (1961), 73-79 French. (1961) Zbl0097.29401MR0126020DOI10.4064/ap-10-1-73-79
- Rouche, N., Mawhin, J., Équations différentielles ordinaires. Tome I: Théorie générale. Tome II: Stabilité et solutions périodiques, Masson et Cie, Paris French (1973). (1973) Zbl0289.34001MR0481182
- Schmitt, K., Thompson, R., 10.1016/0022-0396(75)90063-7, J. Differ. Equations 18 (1975), 277-295. (1975) Zbl0302.34081MR0374594DOI10.1016/0022-0396(75)90063-7
- Szymańska-Dębowska, K., 10.1016/j.jde.2014.12.022, J. Differ. Equations 258 (2015), 2686-2700. (2015) Zbl1336.47056MR3312640DOI10.1016/j.jde.2014.12.022
- Taddei, V., Two-points boundary value problems for Carathéodory second order equations, Arch. Math., Brno 44 (2008), 93-103. (2008) Zbl1212.34039MR2432846
- Taddei, V., Zanolin, F., 10.1515/GMJ.2007.385, Georgian Math. J. 14 (2007), 385-402. (2007) Zbl1133.34013MR2341286DOI10.1515/GMJ.2007.385
- Thorpe, J. A., 10.1007/978-1-4612-6153-7, Undergraduate Texts in Mathematics. Springer, New York (1979). (1979) Zbl0404.53001MR0528129DOI10.1007/978-1-4612-6153-7
- Tisdell, C. C., Tan, L. H., On vector boundary value problems without growth restrictions, JIPAM, J. Inequal. Pure Appl. Math. 6 (2005), Article No. 137, 10 pages 9999MR99999 2191606 . (2005) Zbl1097.34018MR2191606
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.