Bound sets and two-point boundary value problems for second order differential systems

Jean Mawhin; Katarzyna Szymańska-Dębowska

Mathematica Bohemica (2019)

  • Volume: 144, Issue: 4, page 373-392
  • ISSN: 0862-7959

Abstract

top
The solvability of second order differential systems with the classical separated or periodic boundary conditions is considered. The proofs use special classes of curvature bound sets or bound sets together with the simplest version of the Leray-Schauder continuation theorem. The special cases where the bound set is a ball, a parallelotope or a bounded convex set are considered.

How to cite

top

Mawhin, Jean, and Szymańska-Dębowska, Katarzyna. "Bound sets and two-point boundary value problems for second order differential systems." Mathematica Bohemica 144.4 (2019): 373-392. <http://eudml.org/doc/294674>.

@article{Mawhin2019,
abstract = {The solvability of second order differential systems with the classical separated or periodic boundary conditions is considered. The proofs use special classes of curvature bound sets or bound sets together with the simplest version of the Leray-Schauder continuation theorem. The special cases where the bound set is a ball, a parallelotope or a bounded convex set are considered.},
author = {Mawhin, Jean, Szymańska-Dębowska, Katarzyna},
journal = {Mathematica Bohemica},
keywords = {two-point boundary value problem; curvature bound set; Leray-Schauder theorem; Bernstein-Hartman condition},
language = {eng},
number = {4},
pages = {373-392},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bound sets and two-point boundary value problems for second order differential systems},
url = {http://eudml.org/doc/294674},
volume = {144},
year = {2019},
}

TY - JOUR
AU - Mawhin, Jean
AU - Szymańska-Dębowska, Katarzyna
TI - Bound sets and two-point boundary value problems for second order differential systems
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 4
SP - 373
EP - 392
AB - The solvability of second order differential systems with the classical separated or periodic boundary conditions is considered. The proofs use special classes of curvature bound sets or bound sets together with the simplest version of the Leray-Schauder continuation theorem. The special cases where the bound set is a ball, a parallelotope or a bounded convex set are considered.
LA - eng
KW - two-point boundary value problem; curvature bound set; Leray-Schauder theorem; Bernstein-Hartman condition
UR - http://eudml.org/doc/294674
ER -

References

top
  1. Amster, P., Haddad, J., A Hartman-Nagumo type condition for a class of contractible domains, Topol. Methods Nonlinear Anal. 41 (2013), 287-304. (2013) Zbl1306.34033MR3114309
  2. Bass, R. W., 10.1515/9781400881758-011, Contributions to the Theory of Nonlinear Oscillations, Volume IV. Annals of Mathematics Studies 41. Princeton University Press, Princeton (1958), 201-211 S. Lefschetz. (1958) Zbl0083.31405MR0100704DOI10.1515/9781400881758-011
  3. Bebernes, J. W., 10.2307/2039687, Proc. Am. Math. Soc. 42 (1974), 121-127. (1974) Zbl0286.34055MR0330597DOI10.2307/2039687
  4. Bernstein, S. N., 10.24033/asens.651, Ann. Sci. Éc. Norm. Supér., Sér. III. 29 (1912), 431-485 French 9999JFM99999 43.0460.01. (1912) MR1509153DOI10.24033/asens.651
  5. Coster, C. De, Habets, P., 10.1016/s0076-5392(06)x8055-4, Mathematics in Science and Engineering 205. Elsevier, Amsterdam (2006). (2006) Zbl1330.34009MR2225284DOI10.1016/s0076-5392(06)x8055-4
  6. Fabry, C., 10.1016/0022-247x(85)90358-0, J. Math. Anal. Appl. 107 (1985), 132-143. (1985) Zbl0604.34002MR0786017DOI10.1016/0022-247x(85)90358-0
  7. Fewster-Young, N., 10.12732/ijdea.v14i3.2215, Int. J. Differ. Equ. Appl. 14 (2015), 195-228. (2015) Zbl1337.34024MR3621238DOI10.12732/ijdea.v14i3.2215
  8. Fewster-Young, N., 10.14232/ejqtde.2016.1.17, Electron. J. Qual. Theory Differ. Equ. (2016), 1-15. (2016) Zbl1363.34067MR3487646DOI10.14232/ejqtde.2016.1.17
  9. Frigon, M., 10.12775/tmna.1993.019, Topol. Methods Nonlinear Anal. 1 (1993), 259-274. (1993) Zbl0790.34022MR1233095DOI10.12775/tmna.1993.019
  10. Frigon, M., Boundary and periodic value problems for systems of differential equations under Bernstein-Nagumo growth condition, Differ. Integral Equ. 8 (1995), 1789-1804. (1995) Zbl0831.34021MR1347980
  11. Gaines, R. E., Mawhin, J. L., 10.1007/BFb0089537, Lecture Notes in Mathematics 568. Springer, Cham (1977). (1977) Zbl0339.47031MR0637067DOI10.1007/BFb0089537
  12. Hartman, P., 10.2307/1993537, Trans. Am. Math. Soc. 96 (1960), 493-509. (1960) Zbl0098.06101MR0124553DOI10.2307/1993537
  13. Hartman, P., Ordinary Differential Equations, John Wiley & Sons, New York (1964). (1964) Zbl0125.32102MR0171038
  14. Heinz, E., 10.1007/BF02937346, J. Anal. Math. 5 (1956/1957), 197-272. (1956) Zbl0085.08701MR0136852DOI10.1007/BF02937346
  15. Henderson, J., Sheng, Q., Tisdell, C. C., 10.7153/dea-09-05, Differ. Equ. Appl. 9 (2017), 57-68. (2017) Zbl1365.34043MR3610874DOI10.7153/dea-09-05
  16. Hiriart-Urruty, J.-B., Lemaréchal, C., 10.1007/978-3-662-02796-7, Grundlehren der mathematischen Wissenschaften 305. Springer, Berlin (1993). (1993) Zbl0795.49001MR1261420DOI10.1007/978-3-662-02796-7
  17. Knobloch, H.-W., 10.1016/0022-0396(70)90154-3, J. Differ. Equations 9 (1971), 67-85. (1971) Zbl0211.11801MR0277824DOI10.1016/0022-0396(70)90154-3
  18. Leray, J., Schauder, J., 10.24033/asens.836, Ann. Sci. Éc. Norm. Supér., Sér. III. 51 (1934), 45-78 French. (1934) Zbl0009.07301MR1509338DOI10.24033/asens.836
  19. Mawhin, J., 10.1090/cbms/040, CBMS Regional Conference Series in Mathematics 40. AMS, Providence (1979). (1979) Zbl0414.34025MR0525202DOI10.1090/cbms/040
  20. Mawhin, J., 10.1515/ans-2013-0112, Adv. Nonlinear Stud. 13 (2013), 209-217. (2013) Zbl1278.55004MR3058216DOI10.1515/ans-2013-0112
  21. Mawhin, J., Szymańska-Dębowska, K., 10.1090/proc/13569, Proc. Am. Math. Soc. 145 (2017), 2023-2032. (2017) Zbl1393.34035MR3611317DOI10.1090/proc/13569
  22. Nagumo, M., Über die Differentialgleichung y ' ' = f ( t , y , y ' ) , Proc. Phys.-Math. Soc. Japan, III. Ser. 19 (1937), 861-866 German. (1937) Zbl0017.30801
  23. Opial, Z., 10.4064/ap-10-1-73-79, Ann. Polon. Math. 10 (1961), 73-79 French. (1961) Zbl0097.29401MR0126020DOI10.4064/ap-10-1-73-79
  24. Rouche, N., Mawhin, J., Équations différentielles ordinaires. Tome I: Théorie générale. Tome II: Stabilité et solutions périodiques, Masson et Cie, Paris French (1973). (1973) Zbl0289.34001MR0481182
  25. Schmitt, K., Thompson, R., 10.1016/0022-0396(75)90063-7, J. Differ. Equations 18 (1975), 277-295. (1975) Zbl0302.34081MR0374594DOI10.1016/0022-0396(75)90063-7
  26. Szymańska-Dębowska, K., 10.1016/j.jde.2014.12.022, J. Differ. Equations 258 (2015), 2686-2700. (2015) Zbl1336.47056MR3312640DOI10.1016/j.jde.2014.12.022
  27. Taddei, V., Two-points boundary value problems for Carathéodory second order equations, Arch. Math., Brno 44 (2008), 93-103. (2008) Zbl1212.34039MR2432846
  28. Taddei, V., Zanolin, F., 10.1515/GMJ.2007.385, Georgian Math. J. 14 (2007), 385-402. (2007) Zbl1133.34013MR2341286DOI10.1515/GMJ.2007.385
  29. Thorpe, J. A., 10.1007/978-1-4612-6153-7, Undergraduate Texts in Mathematics. Springer, New York (1979). (1979) Zbl0404.53001MR0528129DOI10.1007/978-1-4612-6153-7
  30. Tisdell, C. C., Tan, L. H., On vector boundary value problems without growth restrictions, JIPAM, J. Inequal. Pure Appl. Math. 6 (2005), Article No. 137, 10 pages 9999MR99999 2191606 . (2005) Zbl1097.34018MR2191606

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.