Manifolds admitting stable forms
Hông-Van Lê; Martin Panák; Jiří Vanžura
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 1, page 101-117
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLê, Hông-Van, Panák, Martin, and Vanžura, Jiří. "Manifolds admitting stable forms." Commentationes Mathematicae Universitatis Carolinae 49.1 (2008): 101-117. <http://eudml.org/doc/250449>.
@article{Lê2008,
abstract = {In this note we give a direct method to classify all stable forms on $\mathbb \{R\}^n$ as well as to determine their automorphism groups. We show that in dimensions 6, 7, 8 stable forms coincide with non-degenerate forms. We present necessary conditions and sufficient conditions for a manifold to admit a stable form. We also discuss rich properties of the geometry of such manifolds.},
author = {Lê, Hông-Van, Panák, Martin, Vanžura, Jiří},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {stable forms; automorphism groups; stable forms; automorphism groups},
language = {eng},
number = {1},
pages = {101-117},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Manifolds admitting stable forms},
url = {http://eudml.org/doc/250449},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Lê, Hông-Van
AU - Panák, Martin
AU - Vanžura, Jiří
TI - Manifolds admitting stable forms
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 1
SP - 101
EP - 117
AB - In this note we give a direct method to classify all stable forms on $\mathbb {R}^n$ as well as to determine their automorphism groups. We show that in dimensions 6, 7, 8 stable forms coincide with non-degenerate forms. We present necessary conditions and sufficient conditions for a manifold to admit a stable form. We also discuss rich properties of the geometry of such manifolds.
LA - eng
KW - stable forms; automorphism groups; stable forms; automorphism groups
UR - http://eudml.org/doc/250449
ER -
References
top- Borel A., Chandra H., 10.2307/1970210, Ann. of Math. 75 (1962), 485-535. (1962) Zbl0107.14804MR0147566DOI10.2307/1970210
- Bureš J., Vanžura J., Multisymplectic forms of degree three in dimension seven, Rend. Circ. Mat. Palermo (2) Suppl. no. 71 (2003), 73-91. (2003) Zbl1045.53017MR1982435
- Bryant R., Metrics with exceptional holonomy, Ann. of Math. (2) 126 (1987), 525-576. (1987) Zbl0637.53042MR0916718
- Bryant R., Conformal geometry and -plane fields on -manifolds, arXiv:math.DG/0511110. MR0974338
- Čadek M., Crabb M., Vanžura J., Obstruction theory on -manifolds, preprint 2007.
- Djokovic D.Z., 10.1080/03081088308817501, Linear and Multilinear Algebra 13 (1983), 3-39. (1983) Zbl0515.15011MR0691457DOI10.1080/03081088308817501
- Dupont J., 10.1007/BF02392142, Acta Math. 133 (1974), 67-80. (1974) Zbl0313.57012MR0425980DOI10.1007/BF02392142
- Gauntlett J.P., Martelli D., Pakis S., Waldram D., 10.1007/s00220-004-1066-y, Comm. Math. Phys. 247 (2004), 421-445, hep-th/0205050. (2004) MR2063267DOI10.1007/s00220-004-1066-y
- Gray A., 10.1090/S0002-9947-1969-0243469-5, Trans. Amer. Math. Soc. 141 (1969), 465-504; (Errata in Trans. Amer. Math. Soc. 148 (1970), 625). (1969) Zbl0182.24603MR0243469DOI10.1090/S0002-9947-1969-0243469-5
- Hitchin N., The geometry of three-forms in six dimensions, J. Differential Geom. 55 (2000), 547-576. (2000) Zbl1036.53042MR1863733
- Hitchin N., 10.1090/conm/288/04818, Contemp. Math. 288 (2001), 70-89. (2001) Zbl1004.53034MR1871001DOI10.1090/conm/288/04818
- Joyce D., Compact Manifolds with Special Holonomy, Oxford University Press, Oxford, 2000. Zbl1027.53052MR1787733
- Sato M., Kimura T., A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155. (1977) MR0430336
- Le H.V., The existence of symplectic -forms on -manifolds, arXiv:math.DG/0603182.
- Le H.V., Manifolds admitting a -structure, arXiv:07040503.
- Murakami S., 10.2969/jmsj/00420103, J. Math. Soc. Japan 4 (1952), 103-133. (1952) MR0051829DOI10.2969/jmsj/00420103
- Sagle A., 10.1090/S0002-9947-1961-0143791-X, Trans. Amer. Math. Soc. 101 (1961), 426-458. (1961) Zbl0101.02302MR0143791DOI10.1090/S0002-9947-1961-0143791-X
- Thomas E., 10.1007/BF01402957, Invent. Math. 3 (1967), 334-347. (1967) Zbl0162.55402MR0217814DOI10.1007/BF01402957
- Thomas E., 10.1007/BF01110620, Math. Z. 103 (1967), 85-93. (1967) MR0224109DOI10.1007/BF01110620
- Tsimpis D., M-theory on eight-manifolds revisited: supersymmetry and generalized Spin -structures, preprint MPP-2005-129. MR2219075
- Witt F., Special metric structures and closed forms, Oxford Ph.D. Thesis, arXiv:math.DG/0502443.
- Yamaguchi K., Differential systems associated with simple graded Lie algebras, Adv. Stud. Pure Math. 22 (1993), 413-494. (1993) Zbl0812.17018MR1274961
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.