Manifolds admitting stable forms

Hông-Van Lê; Martin Panák; Jiří Vanžura

Commentationes Mathematicae Universitatis Carolinae (2008)

  • Volume: 49, Issue: 1, page 101-117
  • ISSN: 0010-2628

Abstract

top
In this note we give a direct method to classify all stable forms on n as well as to determine their automorphism groups. We show that in dimensions 6, 7, 8 stable forms coincide with non-degenerate forms. We present necessary conditions and sufficient conditions for a manifold to admit a stable form. We also discuss rich properties of the geometry of such manifolds.

How to cite

top

Lê, Hông-Van, Panák, Martin, and Vanžura, Jiří. "Manifolds admitting stable forms." Commentationes Mathematicae Universitatis Carolinae 49.1 (2008): 101-117. <http://eudml.org/doc/250449>.

@article{Lê2008,
abstract = {In this note we give a direct method to classify all stable forms on $\mathbb \{R\}^n$ as well as to determine their automorphism groups. We show that in dimensions 6, 7, 8 stable forms coincide with non-degenerate forms. We present necessary conditions and sufficient conditions for a manifold to admit a stable form. We also discuss rich properties of the geometry of such manifolds.},
author = {Lê, Hông-Van, Panák, Martin, Vanžura, Jiří},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {stable forms; automorphism groups; stable forms; automorphism groups},
language = {eng},
number = {1},
pages = {101-117},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Manifolds admitting stable forms},
url = {http://eudml.org/doc/250449},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Lê, Hông-Van
AU - Panák, Martin
AU - Vanžura, Jiří
TI - Manifolds admitting stable forms
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 1
SP - 101
EP - 117
AB - In this note we give a direct method to classify all stable forms on $\mathbb {R}^n$ as well as to determine their automorphism groups. We show that in dimensions 6, 7, 8 stable forms coincide with non-degenerate forms. We present necessary conditions and sufficient conditions for a manifold to admit a stable form. We also discuss rich properties of the geometry of such manifolds.
LA - eng
KW - stable forms; automorphism groups; stable forms; automorphism groups
UR - http://eudml.org/doc/250449
ER -

References

top
  1. Borel A., Chandra H., 10.2307/1970210, Ann. of Math. 75 (1962), 485-535. (1962) Zbl0107.14804MR0147566DOI10.2307/1970210
  2. Bureš J., Vanžura J., Multisymplectic forms of degree three in dimension seven, Rend. Circ. Mat. Palermo (2) Suppl. no. 71 (2003), 73-91. (2003) Zbl1045.53017MR1982435
  3. Bryant R., Metrics with exceptional holonomy, Ann. of Math. (2) 126 (1987), 525-576. (1987) Zbl0637.53042MR0916718
  4. Bryant R., Conformal geometry and 3 -plane fields on 6 -manifolds, arXiv:math.DG/0511110. MR0974338
  5. Čadek M., Crabb M., Vanžura J., Obstruction theory on 8 -manifolds, preprint 2007. 
  6. Djokovic D.Z., 10.1080/03081088308817501, Linear and Multilinear Algebra 13 (1983), 3-39. (1983) Zbl0515.15011MR0691457DOI10.1080/03081088308817501
  7. Dupont J., 10.1007/BF02392142, Acta Math. 133 (1974), 67-80. (1974) Zbl0313.57012MR0425980DOI10.1007/BF02392142
  8. Gauntlett J.P., Martelli D., Pakis S., Waldram D., 10.1007/s00220-004-1066-y, Comm. Math. Phys. 247 (2004), 421-445, hep-th/0205050. (2004) MR2063267DOI10.1007/s00220-004-1066-y
  9. Gray A., 10.1090/S0002-9947-1969-0243469-5, Trans. Amer. Math. Soc. 141 (1969), 465-504; (Errata in Trans. Amer. Math. Soc. 148 (1970), 625). (1969) Zbl0182.24603MR0243469DOI10.1090/S0002-9947-1969-0243469-5
  10. Hitchin N., The geometry of three-forms in six dimensions, J. Differential Geom. 55 (2000), 547-576. (2000) Zbl1036.53042MR1863733
  11. Hitchin N., 10.1090/conm/288/04818, Contemp. Math. 288 (2001), 70-89. (2001) Zbl1004.53034MR1871001DOI10.1090/conm/288/04818
  12. Joyce D., Compact Manifolds with Special Holonomy, Oxford University Press, Oxford, 2000. Zbl1027.53052MR1787733
  13. Sato M., Kimura T., A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155. (1977) MR0430336
  14. Le H.V., The existence of symplectic 3 -forms on 7 -manifolds, arXiv:math.DG/0603182. 
  15. Le H.V., Manifolds admitting a G ˜ 2 -structure, arXiv:07040503. 
  16. Murakami S., 10.2969/jmsj/00420103, J. Math. Soc. Japan 4 (1952), 103-133. (1952) MR0051829DOI10.2969/jmsj/00420103
  17. Sagle A., 10.1090/S0002-9947-1961-0143791-X, Trans. Amer. Math. Soc. 101 (1961), 426-458. (1961) Zbl0101.02302MR0143791DOI10.1090/S0002-9947-1961-0143791-X
  18. Thomas E., 10.1007/BF01402957, Invent. Math. 3 (1967), 334-347. (1967) Zbl0162.55402MR0217814DOI10.1007/BF01402957
  19. Thomas E., 10.1007/BF01110620, Math. Z. 103 (1967), 85-93. (1967) MR0224109DOI10.1007/BF01110620
  20. Tsimpis D., M-theory on eight-manifolds revisited: N = 1 supersymmetry and generalized Spin ( 7 ) -structures, preprint MPP-2005-129. MR2219075
  21. Witt F., Special metric structures and closed forms, Oxford Ph.D. Thesis, arXiv:math.DG/0502443. 
  22. Yamaguchi K., Differential systems associated with simple graded Lie algebras, Adv. Stud. Pure Math. 22 (1993), 413-494. (1993) Zbl0812.17018MR1274961

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.