Universal spaces for manifolds equipped with an integral closed -form
Archivum Mathematicum (2007)
- Volume: 043, Issue: 5, page 443-457
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topHông-Vân Lê. "Universal spaces for manifolds equipped with an integral closed $k$-form." Archivum Mathematicum 043.5 (2007): 443-457. <http://eudml.org/doc/250182>.
@article{Hông2007,
abstract = {In this note we prove that any integral closed $k$-form $\phi ^k$, $k\ge 3$, on a m-dimensional manifold $M^m$, $m \ge k$, is the restriction of a universal closed $k$-form $h^k$ on a universal manifold $U^\{d(m,k)\}$ as a result of an embedding of $M^m$ to $U^\{d(m,k)\}$.},
author = {Hông-Vân Lê},
journal = {Archivum Mathematicum},
keywords = {closed $k$-form; universal space; $H$-principle; closed -form; universal space; -principle},
language = {eng},
number = {5},
pages = {443-457},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Universal spaces for manifolds equipped with an integral closed $k$-form},
url = {http://eudml.org/doc/250182},
volume = {043},
year = {2007},
}
TY - JOUR
AU - Hông-Vân Lê
TI - Universal spaces for manifolds equipped with an integral closed $k$-form
JO - Archivum Mathematicum
PY - 2007
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 043
IS - 5
SP - 443
EP - 457
AB - In this note we prove that any integral closed $k$-form $\phi ^k$, $k\ge 3$, on a m-dimensional manifold $M^m$, $m \ge k$, is the restriction of a universal closed $k$-form $h^k$ on a universal manifold $U^{d(m,k)}$ as a result of an embedding of $M^m$ to $U^{d(m,k)}$.
LA - eng
KW - closed $k$-form; universal space; $H$-principle; closed -form; universal space; -principle
UR - http://eudml.org/doc/250182
ER -
References
top- Dold A., Thom R., Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. 67 (2), (1958), 239–281. (1958) Zbl0091.37102MR0097062
- Dold A., Puppe D., Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier (Grenoble) 11 (1961), 201–312. (1961) Zbl0098.36005MR0150183
- Gromov M., Partial Differential Relations, Springer-Verlag 1986, also translated in Russian, (1990), Moscow-Mir. (1986) Zbl0651.53001MR0864505
- Gromov M., [unknown], privat communication. Zbl1223.37080
- Nash J., The embedding problem for Riemannian manifolds, Ann. of Math. 63 (1), (1956), 20–63. (1956) MR0075639
- Le H. V., Panák M., Vanžura J., Manifolds admitting stable forms, Comment. Math. Univ. Carolin. (2007), to appear. Zbl1212.53051MR2433628
- Thom R., Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86. (1954) Zbl0057.15502MR0061823
- Tischler D., Closed 2-forms and an embedding theorem for symplectic manifolds, J. Differential Geom. 12 (1977), 229–235. (1977) Zbl0386.58001MR0488108
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.