Positive solutions for systems of generalized three-point nonlinear boundary value problems
Johnny Henderson; Sotiris K. Ntouyas; Ioannis K. Purnaras
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 1, page 79-91
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHenderson, Johnny, Ntouyas, Sotiris K., and Purnaras, Ioannis K.. "Positive solutions for systems of generalized three-point nonlinear boundary value problems." Commentationes Mathematicae Universitatis Carolinae 49.1 (2008): 79-91. <http://eudml.org/doc/250464>.
@article{Henderson2008,
abstract = {Values of $\lambda $ are determined for which there exist positive solutions of the system of three-point boundary value problems, $u^\{\prime \prime \}+\lambda a(t) f(v) = 0$, $v^\{\prime \prime \}+\lambda b(t) g(u) = 0$, for $0 < t < 1$, and satisfying, $u(0) = \beta u(\eta )$, $u(1)=\alpha u(\eta )$, $v(0) = \beta v(\eta )$, $v(1) = \alpha v(\eta )$. A Guo-Krasnosel’skii fixed point theorem is applied.},
author = {Henderson, Johnny, Ntouyas, Sotiris K., Purnaras, Ioannis K.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {generalized three-point boundary value problem; system of differential equations; eigenvalue problem; generalized three-point boundary value problem; system of differential equations; eigenvalue problem},
language = {eng},
number = {1},
pages = {79-91},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Positive solutions for systems of generalized three-point nonlinear boundary value problems},
url = {http://eudml.org/doc/250464},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Henderson, Johnny
AU - Ntouyas, Sotiris K.
AU - Purnaras, Ioannis K.
TI - Positive solutions for systems of generalized three-point nonlinear boundary value problems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 1
SP - 79
EP - 91
AB - Values of $\lambda $ are determined for which there exist positive solutions of the system of three-point boundary value problems, $u^{\prime \prime }+\lambda a(t) f(v) = 0$, $v^{\prime \prime }+\lambda b(t) g(u) = 0$, for $0 < t < 1$, and satisfying, $u(0) = \beta u(\eta )$, $u(1)=\alpha u(\eta )$, $v(0) = \beta v(\eta )$, $v(1) = \alpha v(\eta )$. A Guo-Krasnosel’skii fixed point theorem is applied.
LA - eng
KW - generalized three-point boundary value problem; system of differential equations; eigenvalue problem; generalized three-point boundary value problem; system of differential equations; eigenvalue problem
UR - http://eudml.org/doc/250464
ER -
References
top- Agarwal R.P., O'Regan D., Wong P.J.Y., Positive Solutions of Differential, Difference and Integral Equations, Kluwer, Dordrecht, 1999. Zbl1157.34301
- Benchohra M., Hamani S., Henderson J., Ntouyas S.K., Ouahab A., Positive solutions for systems of nonlinear eigenvalue problems, Global J. Math. Anal. 1 (2007), 19-28. (2007) MR2374098
- Erbe L.H., Wang H., 10.1090/S0002-9939-1994-1204373-9, Proc. Amer. Math. Soc. 120 (1994), 743-748. (1994) Zbl0802.34018MR1204373DOI10.1090/S0002-9939-1994-1204373-9
- Graef J.R., Yang B., Boundary value problems for second order nonlinear ordinary differential equations, Commun. Appl. Anal. 6 (2002), 273-288. (2002) Zbl1085.34514MR1894171
- Guo D., Lakshmikantham V., Nonlinear Problems in Abstract Cones, Academic Press, Orlando, 1988. Zbl0661.47045MR0959889
- Henderson J., Ntouyas S.K., Positive solutions for systems of nonlinear boundary value problems, Nonlinear Studies, in press. Zbl1148.34016
- Henderson J., Ntouyas S.K., Positive solutions for systems of three-point nonlinear boundary value problems, Austr. J. Math. Anal. Appl., in press. MR2413225
- Henderson J., Wang H., 10.1006/jmaa.1997.5334, J. Math. Anal. Appl. 208 (1997), 1051-1060. (1997) Zbl0876.34023MR1440355DOI10.1006/jmaa.1997.5334
- Henderson J., Wang H., 10.1016/j.camwa.2003.08.015, Comput. Math. Appl. 49 (2005), 1941-1949. (2005) Zbl1092.34517MR2154696DOI10.1016/j.camwa.2003.08.015
- Henderson J., Wang H., 10.1216/rmjm/1181069327, Rocky Mountain J. Math. 37 (2007), 215-228. (2007) Zbl1149.34013MR2316445DOI10.1216/rmjm/1181069327
- Hu L., Wang L.L., 10.1016/j.jmaa.2006.11.031, J. Math. Anal. Appl. 335 (2007), 2 1052-1060. (2007) Zbl1127.34010MR2346890DOI10.1016/j.jmaa.2006.11.031
- Infante G., Eigenvalues of some nonlocal boundary value problems, Proc. Edinburgh Math. Soc. 46 (2003), 75-86. (2003) MR1961173
- Infante G., Webb J.R.L., 10.1007/s00030-005-0039-y, Nonlinear Differential Equations Appl. 13 (2006), 249-261. (2006) Zbl1112.34017MR2243714DOI10.1007/s00030-005-0039-y
- Liang R., Peng J., Shen J., Positive solutions to a generalized second order three-point boundary value problem, Appl. Math. Comput. (2007) doi:10.1016/j.amc.2007.07.025. Zbl1140.34313
- Ma R., 10.1016/S0362-546X(99)00152-2, Nonlinear Anal. 42 (2000), 1003-1010. (2000) Zbl0973.34014MR1780450DOI10.1016/S0362-546X(99)00152-2
- Raffoul Y., Positive solutions of three-point nonlinear second order boundary value problems, Electron. J. Qual. Theory Differ. Equ. 2002, no. 15, 11pp. (electronic). MR1934391
- Wang H., 10.1016/S0022-247X(03)00100-8, J. Math. Anal. Appl. 281 (2003), 287-306. (2003) Zbl1036.34032MR1980092DOI10.1016/S0022-247X(03)00100-8
- Webb J.R.L., 10.1016/S0362-546X(01)00547-8, Nonlinear Anal. 47 (2001), 4319-4332. (2001) Zbl1042.34527MR1975828DOI10.1016/S0362-546X(01)00547-8
- Zhou Y., Xu Y., 10.1016/j.jmaa.2005.07.014, J. Math. Anal. Appl. 320 (2006), 578-590. (2006) Zbl1101.34008MR2225977DOI10.1016/j.jmaa.2005.07.014
Citations in EuDML Documents
top- Johnny Henderson, Sotiris K. Ntouyas, Ioannis K. Purnaras, Corrigendum to: Positive solutions for systems of generalized three-point nonlinear boundary value problems
- Rochdi Jebari, Abderrahman Boukricha, Positive solutions for a system of third-order differential equation with multi-point and integral conditions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.