Positive solutions for a system of third-order differential equation with multi-point and integral conditions
Rochdi Jebari; Abderrahman Boukricha
Commentationes Mathematicae Universitatis Carolinae (2015)
- Volume: 56, Issue: 2, page 187-207
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topJebari, Rochdi, and Boukricha, Abderrahman. "Positive solutions for a system of third-order differential equation with multi-point and integral conditions." Commentationes Mathematicae Universitatis Carolinae 56.2 (2015): 187-207. <http://eudml.org/doc/270108>.
@article{Jebari2015,
abstract = {This paper concerns the following system of nonlinear third-order boundary value problem: \begin\{equation*\} u\_\{i\}^\{\prime \prime \prime \}(t)+f\_\{i\}(t,u\_\{1\}(t),\dots ,u\_\{n\}(t),u^\{\prime \}\_\{1\}(t),\dots ,u^\{\prime \}\_\{n\}(t))= 0, 0<t<1, i\in \lbrace 1,\dots ,n\rbrace \end\{equation*\}
with the following multi-point and integral boundary conditions: \[ \{\left\lbrace \begin\{array\}\{ll\} u\_\{i\}(0)=0 u\_\{i\}^\{\prime \}(0)=0 u\_\{i\}^\{\prime \}(1)= \sum ^\{p\}\_\{j=1\}\beta \_\{j,i\}u\_\{i\}^\{\prime \}(\eta \_\{j,i\}) + \int ^\{1\}\_\{0\}h\_\{i\}(u\_\{1\}(s),\dots ,u\_\{n\}(s))\,ds \end\{array\}\right.\} \]
where $\beta _\{j,i\}>0$, $0< \eta _\{1,i\}<\dots <\eta _\{p,i\}<\frac\{1\}\{2\}$, $f_\{i\}:[0,1]\times \mathbb \{R\}^\{n\}\times \mathbb \{R\}^\{n\}\rightarrow \mathbb \{R\}$ and $h_\{i\}:[0,1]\times \mathbb \{R\}^\{n\}\rightarrow \mathbb \{R\}$ are continuous functions for all $i\in \lbrace 1,\dots ,n\rbrace $ and $j\in \lbrace 1,\dots ,p\rbrace $. Using Guo-Krasnosel’skii fixed point theorem in cone, we discuss the existence of positive solutions of this problem. We also prove nonexistence of positive solutions and we give some examples to illustrate our results.},
author = {Jebari, Rochdi, Boukricha, Abderrahman},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {third-order differential equation; multi-point and integral boundary conditions; Guo-Krasnosel'skii fixed point theorem in cone; positive solutions; third-order differential equation; multi-point and integral boundary conditions; Guo-Krasnosel'skii fixed point theorem in cone; positive solutions},
language = {eng},
number = {2},
pages = {187-207},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Positive solutions for a system of third-order differential equation with multi-point and integral conditions},
url = {http://eudml.org/doc/270108},
volume = {56},
year = {2015},
}
TY - JOUR
AU - Jebari, Rochdi
AU - Boukricha, Abderrahman
TI - Positive solutions for a system of third-order differential equation with multi-point and integral conditions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 2
SP - 187
EP - 207
AB - This paper concerns the following system of nonlinear third-order boundary value problem: \begin{equation*} u_{i}^{\prime \prime \prime }(t)+f_{i}(t,u_{1}(t),\dots ,u_{n}(t),u^{\prime }_{1}(t),\dots ,u^{\prime }_{n}(t))= 0, 0<t<1, i\in \lbrace 1,\dots ,n\rbrace \end{equation*}
with the following multi-point and integral boundary conditions: \[ {\left\lbrace \begin{array}{ll} u_{i}(0)=0 u_{i}^{\prime }(0)=0 u_{i}^{\prime }(1)= \sum ^{p}_{j=1}\beta _{j,i}u_{i}^{\prime }(\eta _{j,i}) + \int ^{1}_{0}h_{i}(u_{1}(s),\dots ,u_{n}(s))\,ds \end{array}\right.} \]
where $\beta _{j,i}>0$, $0< \eta _{1,i}<\dots <\eta _{p,i}<\frac{1}{2}$, $f_{i}:[0,1]\times \mathbb {R}^{n}\times \mathbb {R}^{n}\rightarrow \mathbb {R}$ and $h_{i}:[0,1]\times \mathbb {R}^{n}\rightarrow \mathbb {R}$ are continuous functions for all $i\in \lbrace 1,\dots ,n\rbrace $ and $j\in \lbrace 1,\dots ,p\rbrace $. Using Guo-Krasnosel’skii fixed point theorem in cone, we discuss the existence of positive solutions of this problem. We also prove nonexistence of positive solutions and we give some examples to illustrate our results.
LA - eng
KW - third-order differential equation; multi-point and integral boundary conditions; Guo-Krasnosel'skii fixed point theorem in cone; positive solutions; third-order differential equation; multi-point and integral boundary conditions; Guo-Krasnosel'skii fixed point theorem in cone; positive solutions
UR - http://eudml.org/doc/270108
ER -
References
top- Gregus M., Third order linear differential equations, in Math. Appl., Reidel, Dordrecht, 1987. Zbl0602.34005MR0882545
- Yao Q., Feng Y., 10.1016/S0893-9659(01)00122-7, Appl. Math. Lett. 15 (2002), 227–232. Zbl1008.34010MR1880762DOI10.1016/S0893-9659(01)00122-7
- Feng Y., Liu S., 10.1016/j.aml.2004.04.016, Appl. Math. Lett. 18 (2005), 1034–1040. Zbl1094.34506MR2156998DOI10.1016/j.aml.2004.04.016
- Klaasen G., 10.1016/0022-0396(71)90010-6, J. Differential Equations 10 (1971), 529–537. Zbl0218.34024MR0288397DOI10.1016/0022-0396(71)90010-6
- Jackson L.K., 10.1016/0022-0396(73)90002-8, J. Differential Equations 13 (1973), 432–437. Zbl0256.34018MR0335925DOI10.1016/0022-0396(73)90002-8
- O'Regan D., 10.1137/0518048, SIAM J. Math. Anal. 19 (1987), 630–641. MR0883557DOI10.1137/0518048
- Sun Y., 10.1016/j.aml.2008.02.002, Appl. Math. Lett. 22 (2009) 45–51. Zbl1163.34313MR2483159DOI10.1016/j.aml.2008.02.002
- Guo L.J., Sun J.P., Zhao Y.H., 10.1016/j.na.2007.03.008, Nonlinear Anal. 68 (2008), 3151–3158. MR2404825DOI10.1016/j.na.2007.03.008
- Guo D., Lakshmikantham V., Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988. Zbl0661.47045MR0959889
- Deimling K., Nonlinear Functional Analysis, Springer, Berlin, 1985. Zbl0559.47040MR0787404
- Zhang X.G., Liu L.S., and Wu C.X., 10.1016/j.amc.2005.10.017, Appl. Math. Comput. 176 (2006), 714–721. MR2232063DOI10.1016/j.amc.2005.10.017
- Chen H., 10.1016/j.mcm.2006.08.004, Math. Comput. Modelling 45 (2007), 844–852. Zbl1137.34319MR2297125DOI10.1016/j.mcm.2006.08.004
- Graef J.R., Yang B., Multiple positive solution to a three-point third order boundary value problems, Discrete Contin. Dyn. Syst. 2005, suppl., pp. 1–8. MR2192690
- Ma R., 10.1016/S0893-9659(00)00102-6, Appl. Math. Lett. 14 (2001), 1–5. MR1793693DOI10.1016/S0893-9659(00)00102-6
- Yao Q.L., 10.1007/s10255-003-0087-1, Acta Math. Appl. Sinica 19 (2003), 117–122. MR2053778DOI10.1007/s10255-003-0087-1
- Anderson D., 10.1016/S0895-7177(98)00028-4, Math. Comput. Modelling 27 (1998), 49–57. Zbl0906.34014MR1620897DOI10.1016/S0895-7177(98)00028-4
- Goodrich C.S., Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale, Comment. Math. Univ. Carolin. 54 (2013), no. 4, 509–525. MR3125073
- Anderson D., 10.1016/S0022-247X(03)00132-X, J. Math. Anal. Appl. 288 (2003), 1–14. Zbl1045.34008MR2019740DOI10.1016/S0022-247X(03)00132-X
- Boucherif A., Al-Malki N., 10.1016/j.amc.2007.02.039, Appl. Math. Comput. 190 (2007), 1168–1177. Zbl1134.34007MR2339710DOI10.1016/j.amc.2007.02.039
- Kong L., Kong Q., 10.1016/j.na.2004.03.033, Nonlinear. Anal. 58 (2004), 909–931. Zbl1066.34012MR2086064DOI10.1016/j.na.2004.03.033
- Kong L., Kong Q., Multi-point boundary value problems of second-order differential equations (II), Comm. Appl. Nonlinear. Anal. 14 (2007), 93–111. Zbl1140.34008MR2294496
- Henderson J., Ntouyas S.K., Purnaras I.K., Positive solutions for systems of generalized three-point nonlinear boundary value problems, Comment. Math. Univ. Carolin. 49 (2008), no. 1, 79–91. Zbl1212.34058MR2433626
- Jebari R., Boukricha A., 10.1186/s13661-014-0262-8, Bound. Value Probl. 2014, DOI: 10.1186/s13661-014-0262-8. MR3291555DOI10.1186/s13661-014-0262-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.