Positive solutions for a system of third-order differential equation with multi-point and integral conditions

Rochdi Jebari; Abderrahman Boukricha

Commentationes Mathematicae Universitatis Carolinae (2015)

  • Volume: 56, Issue: 2, page 187-207
  • ISSN: 0010-2628

Abstract

top
This paper concerns the following system of nonlinear third-order boundary value problem: u i ' ' ' ( t ) + f i ( t , u 1 ( t ) , , u n ( t ) , u 1 ' ( t ) , , u n ' ( t ) ) = 0 , 0 < t < 1 , i { 1 , , n } with the following multi-point and integral boundary conditions: u i ( 0 ) = 0 u i ' ( 0 ) = 0 u i ' ( 1 ) = j = 1 p β j , i u i ' ( η j , i ) + 0 1 h i ( u 1 ( s ) , , u n ( s ) ) d s where β j , i > 0 , 0 < η 1 , i < < η p , i < 1 2 , f i : [ 0 , 1 ] × n × n and h i : [ 0 , 1 ] × n are continuous functions for all i { 1 , , n } and j { 1 , , p } . Using Guo-Krasnosel’skii fixed point theorem in cone, we discuss the existence of positive solutions of this problem. We also prove nonexistence of positive solutions and we give some examples to illustrate our results.

How to cite

top

Jebari, Rochdi, and Boukricha, Abderrahman. "Positive solutions for a system of third-order differential equation with multi-point and integral conditions." Commentationes Mathematicae Universitatis Carolinae 56.2 (2015): 187-207. <http://eudml.org/doc/270108>.

@article{Jebari2015,
abstract = {This paper concerns the following system of nonlinear third-order boundary value problem: \begin\{equation*\} u\_\{i\}^\{\prime \prime \prime \}(t)+f\_\{i\}(t,u\_\{1\}(t),\dots ,u\_\{n\}(t),u^\{\prime \}\_\{1\}(t),\dots ,u^\{\prime \}\_\{n\}(t))= 0, 0<t<1, i\in \lbrace 1,\dots ,n\rbrace \end\{equation*\} with the following multi-point and integral boundary conditions: \[ \{\left\lbrace \begin\{array\}\{ll\} u\_\{i\}(0)=0 u\_\{i\}^\{\prime \}(0)=0 u\_\{i\}^\{\prime \}(1)= \sum ^\{p\}\_\{j=1\}\beta \_\{j,i\}u\_\{i\}^\{\prime \}(\eta \_\{j,i\}) + \int ^\{1\}\_\{0\}h\_\{i\}(u\_\{1\}(s),\dots ,u\_\{n\}(s))\,ds \end\{array\}\right.\} \] where $\beta _\{j,i\}>0$, $0< \eta _\{1,i\}<\dots <\eta _\{p,i\}<\frac\{1\}\{2\}$, $f_\{i\}:[0,1]\times \mathbb \{R\}^\{n\}\times \mathbb \{R\}^\{n\}\rightarrow \mathbb \{R\}$ and $h_\{i\}:[0,1]\times \mathbb \{R\}^\{n\}\rightarrow \mathbb \{R\}$ are continuous functions for all $i\in \lbrace 1,\dots ,n\rbrace $ and $j\in \lbrace 1,\dots ,p\rbrace $. Using Guo-Krasnosel’skii fixed point theorem in cone, we discuss the existence of positive solutions of this problem. We also prove nonexistence of positive solutions and we give some examples to illustrate our results.},
author = {Jebari, Rochdi, Boukricha, Abderrahman},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {third-order differential equation; multi-point and integral boundary conditions; Guo-Krasnosel'skii fixed point theorem in cone; positive solutions; third-order differential equation; multi-point and integral boundary conditions; Guo-Krasnosel'skii fixed point theorem in cone; positive solutions},
language = {eng},
number = {2},
pages = {187-207},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Positive solutions for a system of third-order differential equation with multi-point and integral conditions},
url = {http://eudml.org/doc/270108},
volume = {56},
year = {2015},
}

TY - JOUR
AU - Jebari, Rochdi
AU - Boukricha, Abderrahman
TI - Positive solutions for a system of third-order differential equation with multi-point and integral conditions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 2
SP - 187
EP - 207
AB - This paper concerns the following system of nonlinear third-order boundary value problem: \begin{equation*} u_{i}^{\prime \prime \prime }(t)+f_{i}(t,u_{1}(t),\dots ,u_{n}(t),u^{\prime }_{1}(t),\dots ,u^{\prime }_{n}(t))= 0, 0<t<1, i\in \lbrace 1,\dots ,n\rbrace \end{equation*} with the following multi-point and integral boundary conditions: \[ {\left\lbrace \begin{array}{ll} u_{i}(0)=0 u_{i}^{\prime }(0)=0 u_{i}^{\prime }(1)= \sum ^{p}_{j=1}\beta _{j,i}u_{i}^{\prime }(\eta _{j,i}) + \int ^{1}_{0}h_{i}(u_{1}(s),\dots ,u_{n}(s))\,ds \end{array}\right.} \] where $\beta _{j,i}>0$, $0< \eta _{1,i}<\dots <\eta _{p,i}<\frac{1}{2}$, $f_{i}:[0,1]\times \mathbb {R}^{n}\times \mathbb {R}^{n}\rightarrow \mathbb {R}$ and $h_{i}:[0,1]\times \mathbb {R}^{n}\rightarrow \mathbb {R}$ are continuous functions for all $i\in \lbrace 1,\dots ,n\rbrace $ and $j\in \lbrace 1,\dots ,p\rbrace $. Using Guo-Krasnosel’skii fixed point theorem in cone, we discuss the existence of positive solutions of this problem. We also prove nonexistence of positive solutions and we give some examples to illustrate our results.
LA - eng
KW - third-order differential equation; multi-point and integral boundary conditions; Guo-Krasnosel'skii fixed point theorem in cone; positive solutions; third-order differential equation; multi-point and integral boundary conditions; Guo-Krasnosel'skii fixed point theorem in cone; positive solutions
UR - http://eudml.org/doc/270108
ER -

References

top
  1. Gregus M., Third order linear differential equations, in Math. Appl., Reidel, Dordrecht, 1987. Zbl0602.34005MR0882545
  2. Yao Q., Feng Y., 10.1016/S0893-9659(01)00122-7, Appl. Math. Lett. 15 (2002), 227–232. Zbl1008.34010MR1880762DOI10.1016/S0893-9659(01)00122-7
  3. Feng Y., Liu S., 10.1016/j.aml.2004.04.016, Appl. Math. Lett. 18 (2005), 1034–1040. Zbl1094.34506MR2156998DOI10.1016/j.aml.2004.04.016
  4. Klaasen G., 10.1016/0022-0396(71)90010-6, J. Differential Equations 10 (1971), 529–537. Zbl0218.34024MR0288397DOI10.1016/0022-0396(71)90010-6
  5. Jackson L.K., 10.1016/0022-0396(73)90002-8, J. Differential Equations 13 (1973), 432–437. Zbl0256.34018MR0335925DOI10.1016/0022-0396(73)90002-8
  6. O'Regan D., 10.1137/0518048, SIAM J. Math. Anal. 19 (1987), 630–641. MR0883557DOI10.1137/0518048
  7. Sun Y., 10.1016/j.aml.2008.02.002, Appl. Math. Lett. 22 (2009) 45–51. Zbl1163.34313MR2483159DOI10.1016/j.aml.2008.02.002
  8. Guo L.J., Sun J.P., Zhao Y.H., 10.1016/j.na.2007.03.008, Nonlinear Anal. 68 (2008), 3151–3158. MR2404825DOI10.1016/j.na.2007.03.008
  9. Guo D., Lakshmikantham V., Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988. Zbl0661.47045MR0959889
  10. Deimling K., Nonlinear Functional Analysis, Springer, Berlin, 1985. Zbl0559.47040MR0787404
  11. Zhang X.G., Liu L.S., and Wu C.X., 10.1016/j.amc.2005.10.017, Appl. Math. Comput. 176 (2006), 714–721. MR2232063DOI10.1016/j.amc.2005.10.017
  12. Chen H., 10.1016/j.mcm.2006.08.004, Math. Comput. Modelling 45 (2007), 844–852. Zbl1137.34319MR2297125DOI10.1016/j.mcm.2006.08.004
  13. Graef J.R., Yang B., Multiple positive solution to a three-point third order boundary value problems, Discrete Contin. Dyn. Syst. 2005, suppl., pp. 1–8. MR2192690
  14. Ma R., 10.1016/S0893-9659(00)00102-6, Appl. Math. Lett. 14 (2001), 1–5. MR1793693DOI10.1016/S0893-9659(00)00102-6
  15. Yao Q.L., 10.1007/s10255-003-0087-1, Acta Math. Appl. Sinica 19 (2003), 117–122. MR2053778DOI10.1007/s10255-003-0087-1
  16. Anderson D., 10.1016/S0895-7177(98)00028-4, Math. Comput. Modelling 27 (1998), 49–57. Zbl0906.34014MR1620897DOI10.1016/S0895-7177(98)00028-4
  17. Goodrich C.S., Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale, Comment. Math. Univ. Carolin. 54 (2013), no. 4, 509–525. MR3125073
  18. Anderson D., 10.1016/S0022-247X(03)00132-X, J. Math. Anal. Appl. 288 (2003), 1–14. Zbl1045.34008MR2019740DOI10.1016/S0022-247X(03)00132-X
  19. Boucherif A., Al-Malki N., 10.1016/j.amc.2007.02.039, Appl. Math. Comput. 190 (2007), 1168–1177. Zbl1134.34007MR2339710DOI10.1016/j.amc.2007.02.039
  20. Kong L., Kong Q., 10.1016/j.na.2004.03.033, Nonlinear. Anal. 58 (2004), 909–931. Zbl1066.34012MR2086064DOI10.1016/j.na.2004.03.033
  21. Kong L., Kong Q., Multi-point boundary value problems of second-order differential equations (II), Comm. Appl. Nonlinear. Anal. 14 (2007), 93–111. Zbl1140.34008MR2294496
  22. Henderson J., Ntouyas S.K., Purnaras I.K., Positive solutions for systems of generalized three-point nonlinear boundary value problems, Comment. Math. Univ. Carolin. 49 (2008), no. 1, 79–91. Zbl1212.34058MR2433626
  23. Jebari R., Boukricha A., 10.1186/s13661-014-0262-8, Bound. Value Probl. 2014, DOI: 10.1186/s13661-014-0262-8. MR3291555DOI10.1186/s13661-014-0262-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.