Lattice-valued Borel measures. III.

Surjit Singh Khurana

Archivum Mathematicum (2008)

  • Volume: 044, Issue: 4, page 307-316
  • ISSN: 0044-8753

Abstract

top
Let X be a completely regular T 1 space, E a boundedly complete vector lattice, C ( X ) ( C b ( X ) ) the space of all (all, bounded), real-valued continuous functions on X . In order convergence, we consider E -valued, order-bounded, σ -additive, τ -additive, and tight measures on X and prove some order-theoretic and topological properties of these measures. Also for an order-bounded, E -valued (for some special E ) linear map on C ( X ) , a measure representation result is proved. In case E n * separates the points of E , an Alexanderov’s type theorem is proved for a sequence of σ -additive measures.

How to cite

top

Khurana, Surjit Singh. "Lattice-valued Borel measures. III.." Archivum Mathematicum 044.4 (2008): 307-316. <http://eudml.org/doc/250471>.

@article{Khurana2008,
abstract = {Let $X$ be a completely regular $T_\{1\}$ space, $E$ a boundedly complete vector lattice, $ C(X)$$(C_\{b\}(X))$ the space of all (all, bounded), real-valued continuous functions on $X$. In order convergence, we consider $E$-valued, order-bounded, $\sigma $-additive, $\tau $-additive, and tight measures on X and prove some order-theoretic and topological properties of these measures. Also for an order-bounded, $E$-valued (for some special $E$) linear map on $C(X)$, a measure representation result is proved. In case $E_\{n\}^\{*\}$ separates the points of $E$, an Alexanderov’s type theorem is proved for a sequence of $\sigma $-additive measures.},
author = {Khurana, Surjit Singh},
journal = {Archivum Mathematicum},
keywords = {order convergence; tight and $\tau $-smooth lattice-valued vector measures; measure representation of positive linear operators; Alexandrov’s theorem; order convergence; tight measure; -smooth lattice-valued vector measure; measure representation; positive linear operator; Alexandrov's theorem},
language = {eng},
number = {4},
pages = {307-316},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Lattice-valued Borel measures. III.},
url = {http://eudml.org/doc/250471},
volume = {044},
year = {2008},
}

TY - JOUR
AU - Khurana, Surjit Singh
TI - Lattice-valued Borel measures. III.
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 4
SP - 307
EP - 316
AB - Let $X$ be a completely regular $T_{1}$ space, $E$ a boundedly complete vector lattice, $ C(X)$$(C_{b}(X))$ the space of all (all, bounded), real-valued continuous functions on $X$. In order convergence, we consider $E$-valued, order-bounded, $\sigma $-additive, $\tau $-additive, and tight measures on X and prove some order-theoretic and topological properties of these measures. Also for an order-bounded, $E$-valued (for some special $E$) linear map on $C(X)$, a measure representation result is proved. In case $E_{n}^{*}$ separates the points of $E$, an Alexanderov’s type theorem is proved for a sequence of $\sigma $-additive measures.
LA - eng
KW - order convergence; tight and $\tau $-smooth lattice-valued vector measures; measure representation of positive linear operators; Alexandrov’s theorem; order convergence; tight measure; -smooth lattice-valued vector measure; measure representation; positive linear operator; Alexandrov's theorem
UR - http://eudml.org/doc/250471
ER -

References

top
  1. Aliprantis, C. D., Burkinshaw, O., Positive Operators, Academic Press, 1985. (1985) Zbl0608.47039MR0809372
  2. Diestel, J., Uhl, J. J., Vector measures, Math. Surveys 15 (1977), 322. (1977) Zbl0369.46039MR0453964
  3. Kaplan, S., 10.1090/S0002-9947-1957-0090774-3, Trans. Amer. Math. Soc. 86 (1957), 70–90. (1957) MR0090774DOI10.1090/S0002-9947-1957-0090774-3
  4. Kaplan, S., 10.1090/S0002-9947-1964-0170205-9, Trans. Amer. Math. Soc. 113 (1964), 517–546. (1964) Zbl0126.12002MR0170205DOI10.1090/S0002-9947-1964-0170205-9
  5. Kawabe, J., The Portmanteau theorem for Dedekind complete Riesz space-valued measures, Nonlinear Analysis and Convex Analysis, Yokohama Publ., 2004, pp. 149–158. (2004) Zbl1076.28004MR2144038
  6. Kawabe, J., 10.1017/S0004972700038235, Bull. Austral. Math. Soc. 71 (2) (2005), 265–274. (2005) MR2133410DOI10.1017/S0004972700038235
  7. Khurana, Surjit Singh, 10.1216/RMJ-1976-6-2-377, Rocky Mountain J. Math. 6 (1976), 377–382. (1976) MR0399409DOI10.1216/RMJ-1976-6-2-377
  8. Khurana, Surjit Singh, 10.1090/S0002-9947-1978-0460590-2, Trans. Amer. Math. Soc. 235 (1978), 205–211. (1978) Zbl0325.28012MR0460590DOI10.1090/S0002-9947-1978-0460590-2
  9. Khurana, Surjit Singh, Vector measures on topological spaces, Georgian Math. J. 14 (2007), 687–698. (2007) Zbl1154.46025MR2389030
  10. Kluvanek, I., Knowles, G., Vector measures and Control Systems, North-Holland Math. Stud. 20 (58) (1975), ix+180 pp. (1975) MR0499068
  11. Lewis, D. R., 10.2140/pjm.1970.33.157, Pacific J. Math. 33 (1970), 157–165. (1970) Zbl0195.14303MR0259064DOI10.2140/pjm.1970.33.157
  12. Lipecki, Z., 10.1002/mana.19871310130, Math. Nachr. 131 (1987), 351–356. (1987) MR0908823DOI10.1002/mana.19871310130
  13. Meyer-Nieberg, P., Banach Lattices and positive operators, Springer-Verlag, 1991. (1991) MR1128093
  14. Schaefer, H. H., Banach Lattices and Positive Operators, Springer-Verlag, 1974. (1974) Zbl0296.47023MR0423039
  15. Schaefer, H. H., Topological Vector Spaces, Springer-Verlag, 1986. (1986) MR0342978
  16. Schaefer, H. H., Zhang, Xaio-Dong, 10.1007/BF01189889, Arch. Math. (Basel) 63 (2) (1994), 152–157. (1994) MR1289297DOI10.1007/BF01189889
  17. Schmidt, K. D., On the Jordan decomposition for vector measures. Probability in Banach spaces, IV, (Oberwolfach 1982) Lecture Notes in Math. 990 (1983), 198–203, Springer, Berlin-New York. (1983) MR0707518
  18. Schmidt, K. D., Decompositions of vector measures in Riesz spaces and Banach lattices, Proc. Edinburgh Math. Soc. (2) 29 (1) (1986), 23–39. (1986) Zbl0569.28011MR0829177
  19. Varadarajan, V. S., Measures on topological spaces, Amer. Math. Soc. Transl. Ser. 2 48 (1965), 161–220. (1965) 
  20. Wheeler, R. F., Survey of Baire measures and strict topologies, Exposition. Math. 2 (1983), 97–190. (1983) Zbl0522.28009MR0710569
  21. Wright, J. D. M., Stone-algebra-valued measures and integrals, Proc. London Math. Soc. (3) 19 (1969), 107–122. (1969) Zbl0186.46504MR0240276
  22. Wright, J. D. M., 10.5802/aif.393, Ann. Inst. Fourier (Grenoble) 21 (1971), 65–85. (1971) Zbl0215.48101MR0330411DOI10.5802/aif.393
  23. Wright, J. D. M., 10.1007/BF01117493, Math. Z. 120 (1971), 193–203. (1971) Zbl0198.47803MR0293373DOI10.1007/BF01117493
  24. Wright, J. D. M., Measures with values in partially ordered vector spaces, Proc. London Math. Soc. 25 (1972), 675–688. (1972) MR0344413
  25. Wright, J. D. M., 10.1112/jlms/s2-7.2.277, J. London Math. Soc. 7 (1973), 277–285. (1973) MR0333116DOI10.1112/jlms/s2-7.2.277

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.