Lattice-valued Borel measures. III.
Archivum Mathematicum (2008)
- Volume: 044, Issue: 4, page 307-316
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKhurana, Surjit Singh. "Lattice-valued Borel measures. III.." Archivum Mathematicum 044.4 (2008): 307-316. <http://eudml.org/doc/250471>.
@article{Khurana2008,
abstract = {Let $X$ be a completely regular $T_\{1\}$ space, $E$ a boundedly complete vector lattice, $ C(X)$$(C_\{b\}(X))$ the space of all (all, bounded), real-valued continuous functions on $X$. In order convergence, we consider $E$-valued, order-bounded, $\sigma $-additive, $\tau $-additive, and tight measures on X and prove some order-theoretic and topological properties of these measures. Also for an order-bounded, $E$-valued (for some special $E$) linear map on $C(X)$, a measure representation result is proved. In case $E_\{n\}^\{*\}$ separates the points of $E$, an Alexanderov’s type theorem is proved for a sequence of $\sigma $-additive measures.},
author = {Khurana, Surjit Singh},
journal = {Archivum Mathematicum},
keywords = {order convergence; tight and $\tau $-smooth lattice-valued vector measures; measure representation of positive linear operators; Alexandrov’s theorem; order convergence; tight measure; -smooth lattice-valued vector measure; measure representation; positive linear operator; Alexandrov's theorem},
language = {eng},
number = {4},
pages = {307-316},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Lattice-valued Borel measures. III.},
url = {http://eudml.org/doc/250471},
volume = {044},
year = {2008},
}
TY - JOUR
AU - Khurana, Surjit Singh
TI - Lattice-valued Borel measures. III.
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 4
SP - 307
EP - 316
AB - Let $X$ be a completely regular $T_{1}$ space, $E$ a boundedly complete vector lattice, $ C(X)$$(C_{b}(X))$ the space of all (all, bounded), real-valued continuous functions on $X$. In order convergence, we consider $E$-valued, order-bounded, $\sigma $-additive, $\tau $-additive, and tight measures on X and prove some order-theoretic and topological properties of these measures. Also for an order-bounded, $E$-valued (for some special $E$) linear map on $C(X)$, a measure representation result is proved. In case $E_{n}^{*}$ separates the points of $E$, an Alexanderov’s type theorem is proved for a sequence of $\sigma $-additive measures.
LA - eng
KW - order convergence; tight and $\tau $-smooth lattice-valued vector measures; measure representation of positive linear operators; Alexandrov’s theorem; order convergence; tight measure; -smooth lattice-valued vector measure; measure representation; positive linear operator; Alexandrov's theorem
UR - http://eudml.org/doc/250471
ER -
References
top- Aliprantis, C. D., Burkinshaw, O., Positive Operators, Academic Press, 1985. (1985) Zbl0608.47039MR0809372
- Diestel, J., Uhl, J. J., Vector measures, Math. Surveys 15 (1977), 322. (1977) Zbl0369.46039MR0453964
- Kaplan, S., 10.1090/S0002-9947-1957-0090774-3, Trans. Amer. Math. Soc. 86 (1957), 70–90. (1957) MR0090774DOI10.1090/S0002-9947-1957-0090774-3
- Kaplan, S., 10.1090/S0002-9947-1964-0170205-9, Trans. Amer. Math. Soc. 113 (1964), 517–546. (1964) Zbl0126.12002MR0170205DOI10.1090/S0002-9947-1964-0170205-9
- Kawabe, J., The Portmanteau theorem for Dedekind complete Riesz space-valued measures, Nonlinear Analysis and Convex Analysis, Yokohama Publ., 2004, pp. 149–158. (2004) Zbl1076.28004MR2144038
- Kawabe, J., 10.1017/S0004972700038235, Bull. Austral. Math. Soc. 71 (2) (2005), 265–274. (2005) MR2133410DOI10.1017/S0004972700038235
- Khurana, Surjit Singh, 10.1216/RMJ-1976-6-2-377, Rocky Mountain J. Math. 6 (1976), 377–382. (1976) MR0399409DOI10.1216/RMJ-1976-6-2-377
- Khurana, Surjit Singh, 10.1090/S0002-9947-1978-0460590-2, Trans. Amer. Math. Soc. 235 (1978), 205–211. (1978) Zbl0325.28012MR0460590DOI10.1090/S0002-9947-1978-0460590-2
- Khurana, Surjit Singh, Vector measures on topological spaces, Georgian Math. J. 14 (2007), 687–698. (2007) Zbl1154.46025MR2389030
- Kluvanek, I., Knowles, G., Vector measures and Control Systems, North-Holland Math. Stud. 20 (58) (1975), ix+180 pp. (1975) MR0499068
- Lewis, D. R., 10.2140/pjm.1970.33.157, Pacific J. Math. 33 (1970), 157–165. (1970) Zbl0195.14303MR0259064DOI10.2140/pjm.1970.33.157
- Lipecki, Z., 10.1002/mana.19871310130, Math. Nachr. 131 (1987), 351–356. (1987) MR0908823DOI10.1002/mana.19871310130
- Meyer-Nieberg, P., Banach Lattices and positive operators, Springer-Verlag, 1991. (1991) MR1128093
- Schaefer, H. H., Banach Lattices and Positive Operators, Springer-Verlag, 1974. (1974) Zbl0296.47023MR0423039
- Schaefer, H. H., Topological Vector Spaces, Springer-Verlag, 1986. (1986) MR0342978
- Schaefer, H. H., Zhang, Xaio-Dong, 10.1007/BF01189889, Arch. Math. (Basel) 63 (2) (1994), 152–157. (1994) MR1289297DOI10.1007/BF01189889
- Schmidt, K. D., On the Jordan decomposition for vector measures. Probability in Banach spaces, IV, (Oberwolfach 1982) Lecture Notes in Math. 990 (1983), 198–203, Springer, Berlin-New York. (1983) MR0707518
- Schmidt, K. D., Decompositions of vector measures in Riesz spaces and Banach lattices, Proc. Edinburgh Math. Soc. (2) 29 (1) (1986), 23–39. (1986) Zbl0569.28011MR0829177
- Varadarajan, V. S., Measures on topological spaces, Amer. Math. Soc. Transl. Ser. 2 48 (1965), 161–220. (1965)
- Wheeler, R. F., Survey of Baire measures and strict topologies, Exposition. Math. 2 (1983), 97–190. (1983) Zbl0522.28009MR0710569
- Wright, J. D. M., Stone-algebra-valued measures and integrals, Proc. London Math. Soc. (3) 19 (1969), 107–122. (1969) Zbl0186.46504MR0240276
- Wright, J. D. M., 10.5802/aif.393, Ann. Inst. Fourier (Grenoble) 21 (1971), 65–85. (1971) Zbl0215.48101MR0330411DOI10.5802/aif.393
- Wright, J. D. M., 10.1007/BF01117493, Math. Z. 120 (1971), 193–203. (1971) Zbl0198.47803MR0293373DOI10.1007/BF01117493
- Wright, J. D. M., Measures with values in partially ordered vector spaces, Proc. London Math. Soc. 25 (1972), 675–688. (1972) MR0344413
- Wright, J. D. M., 10.1112/jlms/s2-7.2.277, J. London Math. Soc. 7 (1973), 277–285. (1973) MR0333116DOI10.1112/jlms/s2-7.2.277
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.