The measure extension problem for vector lattices
Annales de l'institut Fourier (1971)
- Volume: 21, Issue: 4, page 65-85
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topWright, J. D. Maitland. "The measure extension problem for vector lattices." Annales de l'institut Fourier 21.4 (1971): 65-85. <http://eudml.org/doc/74062>.
@article{Wright1971,
abstract = {Let $V$ be a boundedly $\sigma $-complete vector lattice. If each $V$-valued premeasure on an arbitrary field of subsets of an arbitrary set can be extended to a $\sigma $-additive measure on the generated $\sigma $-field then $V$ is said to have the measure extension property. Various sufficient conditions on $V$ which ensure that it has this property are known. But a complete characterisation of the property, that is, necessary and sufficient conditions, is obtained here. One of the most useful characterisations is: $V$has the measure extension property if, and only if, each $V$-valued Baire measure on each compact Hausdorff space is regular. This leads to an intrinsic algebraic characterisation: $V$has the measure extension property if, and only if, $V$ is weakly $\sigma $-distributive.},
author = {Wright, J. D. Maitland},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {4},
pages = {65-85},
publisher = {Association des Annales de l'Institut Fourier},
title = {The measure extension problem for vector lattices},
url = {http://eudml.org/doc/74062},
volume = {21},
year = {1971},
}
TY - JOUR
AU - Wright, J. D. Maitland
TI - The measure extension problem for vector lattices
JO - Annales de l'institut Fourier
PY - 1971
PB - Association des Annales de l'Institut Fourier
VL - 21
IS - 4
SP - 65
EP - 85
AB - Let $V$ be a boundedly $\sigma $-complete vector lattice. If each $V$-valued premeasure on an arbitrary field of subsets of an arbitrary set can be extended to a $\sigma $-additive measure on the generated $\sigma $-field then $V$ is said to have the measure extension property. Various sufficient conditions on $V$ which ensure that it has this property are known. But a complete characterisation of the property, that is, necessary and sufficient conditions, is obtained here. One of the most useful characterisations is: $V$has the measure extension property if, and only if, each $V$-valued Baire measure on each compact Hausdorff space is regular. This leads to an intrinsic algebraic characterisation: $V$has the measure extension property if, and only if, $V$ is weakly $\sigma $-distributive.
LA - eng
UR - http://eudml.org/doc/74062
ER -
References
top- [1] E. E. FLOYD, "Boolean algebras with pathological order properties", Pacific J. Math., 5, 687-689 (1955). Zbl0065.26603MR17,450h
- [2] P. R. HALMOS, Boolean algebras, Van Nostrand (1963). Zbl0114.01603MR29 #4713
- [3] P. R. HALMOS, Measure theory, Van Nostrand (1950). Zbl0040.16802MR11,504d
- [4] E. HEWITT and K. STROMBERG, Real and abstract analysis, Springer (1965). Zbl0137.03202
- [5] A. HORN and A. TARSKI, "Measures in Boolean algebras", Trans. Amer. Math. Soc., 64, 467-497 (1948). Zbl0035.03001MR10,518h
- [6] L. V. KANTOROVICH, B. Z. VULICH and A. G. PINSKER, Fonctional analysis in partially ordered spaces, Gostekhizdat (1950). (Russian).
- [7] E. J. McSHANE. Order-preserving maps and integration processes, Annals Math. Studies, 31 (1953). Zbl0051.29301MR15,19g
- [8] K. MATTHES, "Über eine Schar von Regularitätsbedingungen", Math. Nachr., 22, 93-128 (1960). Zbl0098.25601MR23 #A2342
- [9] K. MATTHES, "Über eine Schar von Regularitätsbedingungen II", Math. Nachr., 23, 149-159 (1961). Zbl0100.31601MR25 #3356
- [10] K. MATTHES, "Über die Ausdehnung von N-Homomorphismen Boolescher Algebren", Z. math. Logik u. Grundl. Math., 6, 97-105 (1960). Zbl0103.02102MR23 #A1563
- [11] K. MATTHES, "Über die Ausdehnung von N-Homomorphismen Boolescher Algebren II", Z. Math. logik u. Grundl. Math., 7, 16-19, (1961). Zbl0116.01504MR24 #A2547
- [12] R. SIKORSKI, Boolean algebras, Springer (1962) (Second edition).
- [13] R. SIKORSKI, "On an analogy between measures and homomorphisms", Ann. Soc. Pol. Math., 23, 1-20 (1950). Zbl0041.17804MR12,583e
- [14] M. H. STONE, Boundedness properties in function lattices, Canadian J. Math., 1 176-186 (1949). Zbl0032.16901MR10,546a
- [15] J. D. MAITLAND WRIGHT, "Stone-algebra-valued measures and integrals", Proc. London Math. Soc., (3), 19, 107-122 (1969). Zbl0186.46504MR39 #1625
- [16] R. V. KADISON, "A representation theory for commutative topological algebra", Memoirs Amer. Math. Soc., 7 (1951). Zbl0042.34801MR13,360b
- [17] J. L. KELLEY, "Measures in Boolean algebras", Pacific J. Math. 9, 1165-1171 (1959). Zbl0087.04801MR21 #7286
Citations in EuDML Documents
top- Peter Volauf, Extension and regularity of -group valued measures
- Antonio Boccuto, Domenico Candeloro, Uniform (s)-boundedness and regularity for (l)-group-valued measures
- Peter Maličký, The monotone limit convergence theorem for elementary functions with values in a vector lattice
- Beloslav Riečan, Marta Vrábelová, On the Kurzweil integral for functions with values in ordered spaces. II.
- Surjit Singh Khurana, Lattice-valued Borel measures. III.
- Surjit Singh Khurana, Order convergence of vector measures on topological spaces
- Antonio Boccuto, Beloslav Riečan, On the Henstock-Kurzweil integral for Riesz-space-valued functions defined on unbounded intervals
- Ján Šipoš, Integration in partially ordered linear spaces
- Peter Volauf, On extension of maps with values in ordered spaces
- Peter Volauf, On the lattice group valued submeasures
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.