Spectrum of twisted Dirac operators on the complex projective space 2 q + 1 ( )

Majdi Ben Halima

Commentationes Mathematicae Universitatis Carolinae (2008)

  • Volume: 49, Issue: 3, page 437-445
  • ISSN: 0010-2628

Abstract

top
In this paper, we explicitly determine the spectrum of Dirac operators acting on smooth sections of twisted spinor bundles over the complex projective space 2 q + 1 ( ) for q 1 .

How to cite

top

Halima, Majdi Ben. "Spectrum of twisted Dirac operators on the complex projective space $\mathbb {P}^{2q+1}(\mathbb {C})$." Commentationes Mathematicae Universitatis Carolinae 49.3 (2008): 437-445. <http://eudml.org/doc/250497>.

@article{Halima2008,
abstract = {In this paper, we explicitly determine the spectrum of Dirac operators acting on smooth sections of twisted spinor bundles over the complex projective space $\mathbb \{P\}^\{2q+1\}(\mathbb \{C\})$ for $q\ge 1$.},
author = {Halima, Majdi Ben},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {complex projective space; Dirac operator; spectral theory; complex projective space; Dirac operator; spectral theory},
language = {eng},
number = {3},
pages = {437-445},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Spectrum of twisted Dirac operators on the complex projective space $\mathbb \{P\}^\{2q+1\}(\mathbb \{C\})$},
url = {http://eudml.org/doc/250497},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Halima, Majdi Ben
TI - Spectrum of twisted Dirac operators on the complex projective space $\mathbb {P}^{2q+1}(\mathbb {C})$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 3
SP - 437
EP - 445
AB - In this paper, we explicitly determine the spectrum of Dirac operators acting on smooth sections of twisted spinor bundles over the complex projective space $\mathbb {P}^{2q+1}(\mathbb {C})$ for $q\ge 1$.
LA - eng
KW - complex projective space; Dirac operator; spectral theory; complex projective space; Dirac operator; spectral theory
UR - http://eudml.org/doc/250497
ER -

References

top
  1. Cahen M., Gutt S., Spin structures on compact simply connected Riemannian symmetric spaces, Simon Stevin 62 (1988), 209-242. (1988) Zbl0677.53057MR0976428
  2. Cahen M., Franc M., Gutt S., 10.1007/BF00401871, Lett. Math. Phys. 18 (1989), 165-176. (1989) MR1010996DOI10.1007/BF00401871
  3. Fegan H.D., Steer B., 10.2140/pjm.2000.194.83, Pacific J. Math. 194 (2000), 83-95. (2000) Zbl1027.58027MR1756627DOI10.2140/pjm.2000.194.83
  4. Friedrich T., Dirac Operators in Riemannian Geometry, American Mathematical Society, Providence, Rhode Island, 2000. Zbl0949.58032MR1777332
  5. Ikeda A., Taniguchi Y., Spectra and eigenforms of the Laplacian on S n and P n ( ) , Osaka J. Math. 15 (1978), 515-546. (1978) MR0510492
  6. Milhorat J.-L., 10.1063/1.532324, J. Math. Phys. 39 (1998), 594-609. (1998) MR1489638DOI10.1063/1.532324
  7. Milhorat J.-L., Spectre de l'opérateur de Dirac sur les espaces projectifs quaternioniens, C.R. Acad. Sci. Paris, Série I 314 (1992), 69-72. (1992) Zbl0753.47039MR1149642
  8. Parthasarathy R., 10.2307/1970892, Ann. of Math. 96 (1972), 1-30. (1972) MR0318398DOI10.2307/1970892
  9. Seifarth S., Semmelmann U., The Spectrum of the Dirac operator on the complex projective space 2 m - 1 ( ) , preprint SFB No. 95, Berlin, 1993. 
  10. Strese H., 10.1002/mana.19800980107, Math. Nachr. 98 (1980), 53-59. (1980) Zbl0473.53047MR0623693DOI10.1002/mana.19800980107
  11. Wallach N., Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, New York, 1973. Zbl0265.22022MR0498996

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.