Spectrum of twisted Dirac operators on the complex projective space
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 3, page 437-445
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHalima, Majdi Ben. "Spectrum of twisted Dirac operators on the complex projective space $\mathbb {P}^{2q+1}(\mathbb {C})$." Commentationes Mathematicae Universitatis Carolinae 49.3 (2008): 437-445. <http://eudml.org/doc/250497>.
@article{Halima2008,
abstract = {In this paper, we explicitly determine the spectrum of Dirac operators acting on smooth sections of twisted spinor bundles over the complex projective space $\mathbb \{P\}^\{2q+1\}(\mathbb \{C\})$ for $q\ge 1$.},
author = {Halima, Majdi Ben},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {complex projective space; Dirac operator; spectral theory; complex projective space; Dirac operator; spectral theory},
language = {eng},
number = {3},
pages = {437-445},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Spectrum of twisted Dirac operators on the complex projective space $\mathbb \{P\}^\{2q+1\}(\mathbb \{C\})$},
url = {http://eudml.org/doc/250497},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Halima, Majdi Ben
TI - Spectrum of twisted Dirac operators on the complex projective space $\mathbb {P}^{2q+1}(\mathbb {C})$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 3
SP - 437
EP - 445
AB - In this paper, we explicitly determine the spectrum of Dirac operators acting on smooth sections of twisted spinor bundles over the complex projective space $\mathbb {P}^{2q+1}(\mathbb {C})$ for $q\ge 1$.
LA - eng
KW - complex projective space; Dirac operator; spectral theory; complex projective space; Dirac operator; spectral theory
UR - http://eudml.org/doc/250497
ER -
References
top- Cahen M., Gutt S., Spin structures on compact simply connected Riemannian symmetric spaces, Simon Stevin 62 (1988), 209-242. (1988) Zbl0677.53057MR0976428
- Cahen M., Franc M., Gutt S., 10.1007/BF00401871, Lett. Math. Phys. 18 (1989), 165-176. (1989) MR1010996DOI10.1007/BF00401871
- Fegan H.D., Steer B., 10.2140/pjm.2000.194.83, Pacific J. Math. 194 (2000), 83-95. (2000) Zbl1027.58027MR1756627DOI10.2140/pjm.2000.194.83
- Friedrich T., Dirac Operators in Riemannian Geometry, American Mathematical Society, Providence, Rhode Island, 2000. Zbl0949.58032MR1777332
- Ikeda A., Taniguchi Y., Spectra and eigenforms of the Laplacian on and , Osaka J. Math. 15 (1978), 515-546. (1978) MR0510492
- Milhorat J.-L., 10.1063/1.532324, J. Math. Phys. 39 (1998), 594-609. (1998) MR1489638DOI10.1063/1.532324
- Milhorat J.-L., Spectre de l'opérateur de Dirac sur les espaces projectifs quaternioniens, C.R. Acad. Sci. Paris, Série I 314 (1992), 69-72. (1992) Zbl0753.47039MR1149642
- Parthasarathy R., 10.2307/1970892, Ann. of Math. 96 (1972), 1-30. (1972) MR0318398DOI10.2307/1970892
- Seifarth S., Semmelmann U., The Spectrum of the Dirac operator on the complex projective space , preprint SFB No. 95, Berlin, 1993.
- Strese H., 10.1002/mana.19800980107, Math. Nachr. 98 (1980), 53-59. (1980) Zbl0473.53047MR0623693DOI10.1002/mana.19800980107
- Wallach N., Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, New York, 1973. Zbl0265.22022MR0498996
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.