Metrization problem for linear connections and holonomy algebras

Alena Vanžurová

Archivum Mathematicum (2008)

  • Volume: 044, Issue: 5, page 511-521
  • ISSN: 0044-8753

Abstract

top
We contribute to the following: given a manifold endowed with a linear connection, decide whether the connection arises from some metric tensor. Compatibility condition for a metric is given by a system of ordinary differential equations. Our aim is to emphasize the role of holonomy algebra in comparison with certain more classical approaches, and propose a possible application in the Calculus of Variations (for a particular type of second order system of ODE’s, which define geodesics of a linear connection, components of a metric compatible with the connection play the role of variational multipliers).

How to cite

top

Vanžurová, Alena. "Metrization problem for linear connections and holonomy algebras." Archivum Mathematicum 044.5 (2008): 511-521. <http://eudml.org/doc/250501>.

@article{Vanžurová2008,
abstract = {We contribute to the following: given a manifold endowed with a linear connection, decide whether the connection arises from some metric tensor. Compatibility condition for a metric is given by a system of ordinary differential equations. Our aim is to emphasize the role of holonomy algebra in comparison with certain more classical approaches, and propose a possible application in the Calculus of Variations (for a particular type of second order system of ODE’s, which define geodesics of a linear connection, components of a metric compatible with the connection play the role of variational multipliers).},
author = {Vanžurová, Alena},
journal = {Archivum Mathematicum},
keywords = {manifold; linear connection; pseudo-Riemannian metric; holonomy group; holonomy algebra; manifold; linear connection; pseudo-Riemannian metric; holonomy group; holonomy algebra},
language = {eng},
number = {5},
pages = {511-521},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Metrization problem for linear connections and holonomy algebras},
url = {http://eudml.org/doc/250501},
volume = {044},
year = {2008},
}

TY - JOUR
AU - Vanžurová, Alena
TI - Metrization problem for linear connections and holonomy algebras
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 5
SP - 511
EP - 521
AB - We contribute to the following: given a manifold endowed with a linear connection, decide whether the connection arises from some metric tensor. Compatibility condition for a metric is given by a system of ordinary differential equations. Our aim is to emphasize the role of holonomy algebra in comparison with certain more classical approaches, and propose a possible application in the Calculus of Variations (for a particular type of second order system of ODE’s, which define geodesics of a linear connection, components of a metric compatible with the connection play the role of variational multipliers).
LA - eng
KW - manifold; linear connection; pseudo-Riemannian metric; holonomy group; holonomy algebra; manifold; linear connection; pseudo-Riemannian metric; holonomy group; holonomy algebra
UR - http://eudml.org/doc/250501
ER -

References

top
  1. Anastasiei, M., Metrizable linear connections in vector bundles, Publ. Math. Debrecen 62 (3-4) (2003), 277–287. (2003) MR2008096
  2. Cheng, K. S., Ni, W. T., Necessary and sufficient conditions for the existence of metrics in two-dimensional affine manifolds, Chinese J. Phys. 16 (1978), 228–232. (1978) 
  3. Eisenhart, L. P., Veblen, O., The Riemann geometry and its generalization, Proc. London Math. Soc. 8 (1922), 19–23. (1922) 
  4. Gołab, S., Über die Metrisierbarkeit der affin-zusammenhängenden Räume, Tensor, N. S. 9 (1959), 132–137. (1959) 
  5. Jakubowicz, A., Über die Metrisierbarkeit der affin-zusammenhängenden Räume, Tensor, N. S. 14 (1963), 132–137. (1963) Zbl0122.40501MR0161263
  6. Jakubowicz, A., Über die Metrisierbarkeit der affin-zusammenhängenden Räume, II Teil, Tensor, N.S. 17 (1966), 28–43. (1966) MR0195021
  7. Jakubowicz, A., Über die Metrisierbarkeit der vier-dimensionalen affin-zusammenhängenden Räume, Tensor, N.S. 18 (1967), 259–270. (1967) MR0215253
  8. Kobayashi, S., Nomizu, K., Foundations of Differential Geometry I, II, Wiley-Intersc. Publ., New York, Chichester, Brisbane, Toronto, Singapore, 1991. (1991) 
  9. Kowalski, O., 10.1007/BF01110924, Math. Z. 125 (1972), 129–138. (1972) Zbl0234.53024MR0295250DOI10.1007/BF01110924
  10. Kowalski, O., Metrizability of affine connections on analytic manifolds, Note Mat. 8 (1) (1988), 1–11. (1988) Zbl0699.53038MR1050506
  11. Levine, J., Invariant characterization of two-dimensional affine and metric spaces, Duke Math. J. 14 (1948), 69–77. (1948) MR0025236
  12. Schmidt, B. G., 10.1007/BF01661152, Comm. Math. Phys. 29 (1973), 55–59. (1973) MR0322726DOI10.1007/BF01661152
  13. Thompson, G., Local and global existence of metrics in two-dimensional affine manifolds, Chinese J. Phys. 19 (6) (1991), 529–532. (1991) 
  14. Vanžurová, A., Linear connections on two-manifolds and SODE’s, Proc. Conf. Aplimat 2007 (Bratislava, Slov. Rep.), Part II, 2007, pp. 325–332. (2007) 
  15. Vilimová, Z., The problem of metrizability of linear connections, Master's thesis, Opava, 2004, supervisor: O. Krupková. (2004) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.