Metrizability of connections on two-manifolds

Alena Vanžurová; Petra Žáčková

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2009)

  • Volume: 48, Issue: 1, page 157-170
  • ISSN: 0231-9721

Abstract

top
We contribute to the reverse of the Fundamental Theorem of Riemannian geometry: if a symmetric linear connection on a manifold is given, find non-degenerate metrics compatible with the connection (locally or globally) if there are any. The problem is not easy in general. For nowhere flat 2 -manifolds, we formulate necessary and sufficient metrizability conditions. In the favourable case, we describe all compatible metrics in terms of the Ricci tensor. We propose an application in the calculus of variations.

How to cite

top

Vanžurová, Alena, and Žáčková, Petra. "Metrizability of connections on two-manifolds." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 48.1 (2009): 157-170. <http://eudml.org/doc/35190>.

@article{Vanžurová2009,
abstract = {We contribute to the reverse of the Fundamental Theorem of Riemannian geometry: if a symmetric linear connection on a manifold is given, find non-degenerate metrics compatible with the connection (locally or globally) if there are any. The problem is not easy in general. For nowhere flat $2$-manifolds, we formulate necessary and sufficient metrizability conditions. In the favourable case, we describe all compatible metrics in terms of the Ricci tensor. We propose an application in the calculus of variations.},
author = {Vanžurová, Alena, Žáčková, Petra},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Manifold; linear connection; metric connection; pseudo-Riemannian geometry; linear connection; metric connection; pseudo-Riemannian geometry},
language = {eng},
number = {1},
pages = {157-170},
publisher = {Palacký University Olomouc},
title = {Metrizability of connections on two-manifolds},
url = {http://eudml.org/doc/35190},
volume = {48},
year = {2009},
}

TY - JOUR
AU - Vanžurová, Alena
AU - Žáčková, Petra
TI - Metrizability of connections on two-manifolds
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2009
PB - Palacký University Olomouc
VL - 48
IS - 1
SP - 157
EP - 170
AB - We contribute to the reverse of the Fundamental Theorem of Riemannian geometry: if a symmetric linear connection on a manifold is given, find non-degenerate metrics compatible with the connection (locally or globally) if there are any. The problem is not easy in general. For nowhere flat $2$-manifolds, we formulate necessary and sufficient metrizability conditions. In the favourable case, we describe all compatible metrics in terms of the Ricci tensor. We propose an application in the calculus of variations.
LA - eng
KW - Manifold; linear connection; metric connection; pseudo-Riemannian geometry; linear connection; metric connection; pseudo-Riemannian geometry
UR - http://eudml.org/doc/35190
ER -

References

top
  1. Boothby, W. M., An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, Amsterdam–London–New York–Oxford–Paris–Tokyo, 2003 (revised second editon). (2003) MR0861409
  2. Cocos, M., A note on symmetric connections, J. Geom. Phys. 56 (2006), 337–343. (2006) Zbl1091.53008MR2171888
  3. do Carmo, M. P., Riemannian Geometry., Birkhäuser, Boston–Basel–Berlin, 1992. (1992) Zbl0752.53001MR1138207
  4. Cheng, K. S, Ni, W. T., Necessary and sufficient conditions for the existence of metrics in two-dimensional affine manifolds, Chinese J. Phys. 16 (1978), 228–232. (1978) 
  5. Douglas, J., Solution of the inverse problem of the calculus of variations, Trans. AMS 50 (1941), 71–128. (1941) Zbl0025.18102MR0004740
  6. Dodson, C. T. J., Poston, T., Tensor Geometry. The Geometric Viewpoint and its Uses, Spriger, New York–Berlin–Heidelberg, 1991 (second editon). (1991) Zbl0732.53002MR1223091
  7. Eisenhart, L. P., Veblen, O., The Riemann geometry and its generalization, Proc. London Math. Soc. 8 (1922), 19–23. (1922) 
  8. Jost, J., Riemannian Geometry and Geometric Analysis, Springer, Berlin–Heidelberg–New York, 2005. (2005) Zbl1083.53001MR2165400
  9. Kobayashi, S., Nomizu, K., Foundations of Differential Geometry I, II, Wiley, New York–Chichester–Brisbane–Toronto–Singapore, 1991. (1991) 
  10. Kolář, I., Slovák, J., Michor, P. W., Natural Operations in Differential Geometry, Springer, Berlin–Heidelberg–New York, 1993. (1993) MR1202431
  11. Kowalski, O., On regular curvature structures, Math. Z. 125 (1972), 129–138. (1972) Zbl0234.53024MR0295250
  12. Lovelock, D., Rund, H., Tensors, Differential Forms, and Variational Principle, Wiley, New York–London–Sydney, 1975. (1975) MR0474046
  13. Mikeš, J., Kiosak, V., Vanžurová, A., Geodesic Mappings of Manifolds with Affine Connection, Palacký Univ. Publ., Olomouc, 2008. (2008) Zbl1176.53004MR2488821
  14. Nomizu, K., Sasaki, T., Affine Differential Geometry. Geometry of Affine Immersions, Cambridge Univ. Press, Cambridge, 1994. (1994) MR1311248
  15. Petrov, A. Z., Einstein Spaces, Moscow, 1961 (in Russian). (1961) MR0141492
  16. Schmidt, B. G., Conditions on a connection to be a metric connection, Commun. Math. Phys. 29 (1973), 55–59. (1973) MR0322726
  17. Sinyukov, N. S., Geodesic Mappings of Riemannian Spaces, Moscow, 1979 (in Russian). (1979) Zbl0637.53020MR0552022
  18. Thompson, G., Local and global existence of metrics in two-dimensional affine manifolds, Chinese J. Phys. 19, 6 (1991), 529–532. (1991) 
  19. Vanžurová, A., Linear connections on two-manifolds and SODEs, Proc. Conf. Aplimat 2007, Bratislava, Slov. Rep., Part II, 2007, 325–332. (2007) 
  20. Vanžurová, A., Metrization problem for linear connections and holonomy algebras, Archivum Mathematicum (Brno) 44 (2008), 339–348. (2008) MR2501581
  21. Vanžurová, A., Metrization of linear connections, holonomy groups and holonomy algebras, Acta Physica Debrecina 42 (2008), 39–48. (2008) 
  22. Vanžurová, A., Žáčková, P., Metrization of linear connections, Aplimat, J. of Applied Math. (Bratislava) 2, 1 (2009), 151–163. (2009) 
  23. Wolf, J. A., Spaces of Constant Curvature, Berkley, California, 1972. (1972) MR0343213

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.