Metrizability of connections on two-manifolds
Alena Vanžurová; Petra Žáčková
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2009)
- Volume: 48, Issue: 1, page 157-170
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topVanžurová, Alena, and Žáčková, Petra. "Metrizability of connections on two-manifolds." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 48.1 (2009): 157-170. <http://eudml.org/doc/35190>.
@article{Vanžurová2009,
abstract = {We contribute to the reverse of the Fundamental Theorem of Riemannian geometry: if a symmetric linear connection on a manifold is given, find non-degenerate metrics compatible with the connection (locally or globally) if there are any. The problem is not easy in general. For nowhere flat $2$-manifolds, we formulate necessary and sufficient metrizability conditions. In the favourable case, we describe all compatible metrics in terms of the Ricci tensor. We propose an application in the calculus of variations.},
author = {Vanžurová, Alena, Žáčková, Petra},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Manifold; linear connection; metric connection; pseudo-Riemannian geometry; linear connection; metric connection; pseudo-Riemannian geometry},
language = {eng},
number = {1},
pages = {157-170},
publisher = {Palacký University Olomouc},
title = {Metrizability of connections on two-manifolds},
url = {http://eudml.org/doc/35190},
volume = {48},
year = {2009},
}
TY - JOUR
AU - Vanžurová, Alena
AU - Žáčková, Petra
TI - Metrizability of connections on two-manifolds
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2009
PB - Palacký University Olomouc
VL - 48
IS - 1
SP - 157
EP - 170
AB - We contribute to the reverse of the Fundamental Theorem of Riemannian geometry: if a symmetric linear connection on a manifold is given, find non-degenerate metrics compatible with the connection (locally or globally) if there are any. The problem is not easy in general. For nowhere flat $2$-manifolds, we formulate necessary and sufficient metrizability conditions. In the favourable case, we describe all compatible metrics in terms of the Ricci tensor. We propose an application in the calculus of variations.
LA - eng
KW - Manifold; linear connection; metric connection; pseudo-Riemannian geometry; linear connection; metric connection; pseudo-Riemannian geometry
UR - http://eudml.org/doc/35190
ER -
References
top- Boothby, W. M., An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, Amsterdam–London–New York–Oxford–Paris–Tokyo, 2003 (revised second editon). (2003) MR0861409
- Cocos, M., A note on symmetric connections, J. Geom. Phys. 56 (2006), 337–343. (2006) Zbl1091.53008MR2171888
- do Carmo, M. P., Riemannian Geometry., Birkhäuser, Boston–Basel–Berlin, 1992. (1992) Zbl0752.53001MR1138207
- Cheng, K. S, Ni, W. T., Necessary and sufficient conditions for the existence of metrics in two-dimensional affine manifolds, Chinese J. Phys. 16 (1978), 228–232. (1978)
- Douglas, J., Solution of the inverse problem of the calculus of variations, Trans. AMS 50 (1941), 71–128. (1941) Zbl0025.18102MR0004740
- Dodson, C. T. J., Poston, T., Tensor Geometry. The Geometric Viewpoint and its Uses, Spriger, New York–Berlin–Heidelberg, 1991 (second editon). (1991) Zbl0732.53002MR1223091
- Eisenhart, L. P., Veblen, O., The Riemann geometry and its generalization, Proc. London Math. Soc. 8 (1922), 19–23. (1922)
- Jost, J., Riemannian Geometry and Geometric Analysis, Springer, Berlin–Heidelberg–New York, 2005. (2005) Zbl1083.53001MR2165400
- Kobayashi, S., Nomizu, K., Foundations of Differential Geometry I, II, Wiley, New York–Chichester–Brisbane–Toronto–Singapore, 1991. (1991)
- Kolář, I., Slovák, J., Michor, P. W., Natural Operations in Differential Geometry, Springer, Berlin–Heidelberg–New York, 1993. (1993) MR1202431
- Kowalski, O., On regular curvature structures, Math. Z. 125 (1972), 129–138. (1972) Zbl0234.53024MR0295250
- Lovelock, D., Rund, H., Tensors, Differential Forms, and Variational Principle, Wiley, New York–London–Sydney, 1975. (1975) MR0474046
- Mikeš, J., Kiosak, V., Vanžurová, A., Geodesic Mappings of Manifolds with Affine Connection, Palacký Univ. Publ., Olomouc, 2008. (2008) Zbl1176.53004MR2488821
- Nomizu, K., Sasaki, T., Affine Differential Geometry. Geometry of Affine Immersions, Cambridge Univ. Press, Cambridge, 1994. (1994) MR1311248
- Petrov, A. Z., Einstein Spaces, Moscow, 1961 (in Russian). (1961) MR0141492
- Schmidt, B. G., Conditions on a connection to be a metric connection, Commun. Math. Phys. 29 (1973), 55–59. (1973) MR0322726
- Sinyukov, N. S., Geodesic Mappings of Riemannian Spaces, Moscow, 1979 (in Russian). (1979) Zbl0637.53020MR0552022
- Thompson, G., Local and global existence of metrics in two-dimensional affine manifolds, Chinese J. Phys. 19, 6 (1991), 529–532. (1991)
- Vanžurová, A., Linear connections on two-manifolds and SODEs, Proc. Conf. Aplimat 2007, Bratislava, Slov. Rep., Part II, 2007, 325–332. (2007)
- Vanžurová, A., Metrization problem for linear connections and holonomy algebras, Archivum Mathematicum (Brno) 44 (2008), 339–348. (2008) MR2501581
- Vanžurová, A., Metrization of linear connections, holonomy groups and holonomy algebras, Acta Physica Debrecina 42 (2008), 39–48. (2008)
- Vanžurová, A., Žáčková, P., Metrization of linear connections, Aplimat, J. of Applied Math. (Bratislava) 2, 1 (2009), 151–163. (2009)
- Wolf, J. A., Spaces of Constant Curvature, Berkley, California, 1972. (1972) MR0343213
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.