Exterior differential systems, Lie algebra cohomology, and the rigidity of homogenous varieties

Joseph M. Landsberg

Archivum Mathematicum (2008)

  • Volume: 044, Issue: 5, page 419-447
  • ISSN: 0044-8753

Abstract

top
These are expository notes from the 2008 Srní Winter School. They have two purposes: (1) to give a quick introduction to exterior differential systems (EDS), which is a collection of techniques for determining local existence to systems of partial differential equations, and (2) to give an exposition of recent work (joint with C. Robles) on the study of the Fubini-Griffiths-Harris rigidity of rational homogeneous varieties, which also involves an advance in the EDS technology.

How to cite

top

Landsberg, Joseph M.. "Exterior differential systems, Lie algebra cohomology, and the rigidity of homogenous varieties." Archivum Mathematicum 044.5 (2008): 419-447. <http://eudml.org/doc/250502>.

@article{Landsberg2008,
abstract = {These are expository notes from the 2008 Srní Winter School. They have two purposes: (1) to give a quick introduction to exterior differential systems (EDS), which is a collection of techniques for determining local existence to systems of partial differential equations, and (2) to give an exposition of recent work (joint with C. Robles) on the study of the Fubini-Griffiths-Harris rigidity of rational homogeneous varieties, which also involves an advance in the EDS technology.},
author = {Landsberg, Joseph M.},
journal = {Archivum Mathematicum},
keywords = {projective rigidity; exterior differential systems; Lie algebra cohomology; homogeneous varieties; projective rigidity; exterior differential system; Lie algebra cohomology; homogeneous variety},
language = {eng},
number = {5},
pages = {419-447},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Exterior differential systems, Lie algebra cohomology, and the rigidity of homogenous varieties},
url = {http://eudml.org/doc/250502},
volume = {044},
year = {2008},
}

TY - JOUR
AU - Landsberg, Joseph M.
TI - Exterior differential systems, Lie algebra cohomology, and the rigidity of homogenous varieties
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 5
SP - 419
EP - 447
AB - These are expository notes from the 2008 Srní Winter School. They have two purposes: (1) to give a quick introduction to exterior differential systems (EDS), which is a collection of techniques for determining local existence to systems of partial differential equations, and (2) to give an exposition of recent work (joint with C. Robles) on the study of the Fubini-Griffiths-Harris rigidity of rational homogeneous varieties, which also involves an advance in the EDS technology.
LA - eng
KW - projective rigidity; exterior differential systems; Lie algebra cohomology; homogeneous varieties; projective rigidity; exterior differential system; Lie algebra cohomology; homogeneous variety
UR - http://eudml.org/doc/250502
ER -

References

top
  1. Berger, E., Bryant, R., Griffiths, P., 10.1073/pnas.78.8.4657, Proc. Nat. Acad. Sci. U.S.A. 78 (8), part 1 (1981), 4657–4660. (1981) Zbl0468.53040MR0627257DOI10.1073/pnas.78.8.4657
  2. Bourbaki, N., Groupes et algèbres de Lie, Hermann, Paris, 1968. (1968) Zbl0186.33001MR0240238
  3. Brion, M., Spherical varieties, Proceedings of the International Congress of Mathematicians, Zürich 1994, vol. 1, 2, Birkhäuser, Basel, 1995, pp. 753–760. (1995) Zbl0862.14031MR1403975
  4. Bryant, R., 10.2307/1971360, Ann. of Math. (2) 126 (3) (1987), 525–576. (1987) Zbl0637.53042MR0916718DOI10.2307/1971360
  5. Bryant, R. L., Rigidity and quasi-rigidity of extremal cycles in Hermitian symmetric spaces, Princeton University Press, AM-153, 2005. (2005) 
  6. Bryant, R. L., Chern, S. S., Gardner, R. B., Goldschmidt, H. L., Griffiths, P. A., 10.1007/978-1-4613-9714-4_5, Mathematical Sciences Research Institute Publications, 18. Springer-Verlag, New York, 1991. (1991) Zbl0726.58002MR1083148DOI10.1007/978-1-4613-9714-4_5
  7. Čap, A., Lie algebra cohomology and overdetermined systems, preprint. 
  8. Čap, A., Schichl, H., Parabolic geometries and canonical Cartan connections, Hokkaido Math. J. 29 (3) (2000), 453–505. (2000) MR1795487
  9. Cartan, E., Sur les variétés de courbure constante d’un espace euclidien ou non euclidien, Bull. Soc. Math. France 47 (1919), 125–160; ; see also pp. 321–432 in 125–160 125–160 and 48 (1920), 132–208; see also pp. 321–432 in Oeuvres Complètes Part 3, Gauthier–Villars, 1955. (1919) 
  10. Cartan, E., Sur les variétés a connexion projective, Bull. Soc. Math. France 52 (1924), 205–241. (1924) MR1504846
  11. Chern, S. S., Osserman, R., 10.1007/BFb0096224, Geometry Symposium, Utrecht 1980, Lecture Notes in Math., Springer, Berlin-New York 894 (1981), 49–90. (1981) Zbl0477.53056MR0655419DOI10.1007/BFb0096224
  12. Deligne, P., La série exceptionnelle des groupes de Lie, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 321–326. (1996) MR1378507
  13. Deligne, P., de Man, R., The exceptional series of Lie groups, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 577–582. (1996) Zbl0910.22009MR1411045
  14. Fubini, G., Studi relativi all’elemento lineare proiettivo di una ipersuperficie, Rend. Accad. Naz. dei Lincei (1918), 99–106. (1918) 
  15. Griffiths, P. A., Harris, J., Algebraic geometry and local differential geometry, Ann. Sci. École Norm. Sup. (4) 12 (1979), 355–432. (1979) Zbl0426.14019MR0559347
  16. Harvey, R., Lawson, H. B., 10.1007/BF02392726, Acta Math. 148 (1982), 47–157. (1982) Zbl0584.53021MR0666108DOI10.1007/BF02392726
  17. Hilgert, J., Multiplicity free branching laws for unitary representations, Srní lectures, 2008. (2008) 
  18. Hong, J., Rigidity of singular Schubert varieties in G r ( m , n ) , J. Differential Geom. 71 (1) (2005), 1–22. (2005) MR2191767
  19. Hong, J., 10.1090/S0002-9947-06-04041-4, Trans. Amer. Math. Soc. 359 (5) (2007), 2361–2381. (2007) Zbl1126.14010MR2276624DOI10.1090/S0002-9947-06-04041-4
  20. Hwang, J. M., Yamaguchi, K., 10.1215/S0012-7094-03-12035-9, Duke Math. J. 120 (3) (2003), 621–634. (2003) Zbl1053.32012MR2030098DOI10.1215/S0012-7094-03-12035-9
  21. Ivey, T., Landsberg, J. M., Cartan for beginners: differential geometry via moving frames and exterior differential systems, Grad. Stud. Math. 61 (2003), xiv + 378. (2003) Zbl1105.53001MR2003610
  22. Kebekus, S., Peternell, T., Sommese, A., Wiśniewski, J., 10.1007/PL00005791, Invent. Math. 142 (1) (2000), 1–15. (2000) MR1784795DOI10.1007/PL00005791
  23. Kostant, B., 10.2307/1970237, Ann. of Math. (2) 74 (1961), 329–387. (1961) Zbl0134.03501MR0142696DOI10.2307/1970237
  24. Landsberg, J., Robles, C., Fubini-Griffiths-Harris rigidity and Lie algebra cohomology, preprint arXiv:0707.3410. 
  25. Landsberg, J. M., Differential-geometric characterizations of complete intersections, J. Differential Geom. 44 (1996), 32–73. (1996) Zbl0873.53007MR1420349
  26. Landsberg, J. M., 10.1023/A:1017161326705, Compositio Math. 118 (1999), 189–201. (1999) Zbl0981.53039MR1713310DOI10.1023/A:1017161326705
  27. Landsberg, J. M., Griffiths-Harris rigidity of compact Hermitian symmetric spaces, J. Differential Geom. 74 (3) (2006), 395–405. (2006) Zbl1107.53036MR2269783
  28. Landsberg, J. M., Differential geometry of submanifolds of projective space, Symmetries and overdetermined systems of partial differential equations. Eastwood, Michael (ed.) et al., Proceedings of the IMA summer program, Minneapolis, MN, USA, July 17–August 4, 2006. New York, NY: Springer. The IMA Volumes in Mathematics and its Applications 144 (2008), 105–125. (2008) Zbl1148.53009MR2384708
  29. Landsberg, J. M., 10.1090/S0273-0979-08-01176-2, Bull. Amer. Math. Soc., New Ser. 45 (2) (2008), 247–284. (2008) Zbl1145.68054MR2383305DOI10.1090/S0273-0979-08-01176-2
  30. Landsberg, J. M., Manivel, L., 10.1006/jabr.2000.8697, J. Algebra 239 (2) (2001), 477–512. (2001) Zbl1064.14053MR1832903DOI10.1006/jabr.2000.8697
  31. Landsberg, J. M., Manivel, L., 10.1007/s00029-002-8103-5, Selecta Math. 8 (2002), 137–159. (2002) Zbl1073.14551MR1890196DOI10.1007/s00029-002-8103-5
  32. Landsberg, J. M., Manivel, L., 10.1006/aima.2002.2071, Adv. Math. 171 (2002), 59–85. (2002) Zbl1035.17016MR1933384DOI10.1006/aima.2002.2071
  33. Landsberg, J. M., Manivel, L., On the projective geometry of rational homogeneous varieties, Comment. Math. Helv. 78 (1) (2003), 65–100. (2003) Zbl1048.14032MR1966752
  34. Landsberg, J. M., Manivel, L., Representation theory and projective geometry, Algebraic Transformation Groups and Algebraic Varieties, V. L. Popov (ed.), Encyclopaedia Math. Sci., vol. 132, Springer, 2004, pp. 71–122. (2004) Zbl1145.14316MR2090671
  35. Landsberg, J. M., Manivel, L., 10.1307/mmj/1091112085, Michigan Math. J. 52 (2) (2004), 453–479. (2004) Zbl1165.17302MR2069810DOI10.1307/mmj/1091112085
  36. Landsberg, J. M., Manivel, L., 10.1016/j.aim.2005.02.007, Adv. Math. 201 (2) (2006), 379–407. (2006) Zbl1151.17003MR2211533DOI10.1016/j.aim.2005.02.007
  37. Landsberg, J. M., Manivel, L., The sextonions and E 7 1 2 , Adv. Math. 201 (1) (2006), 143–179. (2006) MR2204753
  38. Landsberg, J. M., Manivel, L., 10.4310/AJM.2007.v11.n3.a1, Asian Math. J. 11 (3) (2007), 341–360. (2007) Zbl1136.14024MR2372722DOI10.4310/AJM.2007.v11.n3.a1
  39. Landsberg, J. M., Weyman, J., 10.1112/jlms/jdm075, J. London Math. Soc. (2) 76 (2) (2007), 513–530. (2007) Zbl1127.14045MR2363430DOI10.1112/jlms/jdm075
  40. Landsberg, J. M., Weyman, J., 10.1112/blms/bdm049, Bull. London Math. Soc. 39 (4) (2007), 685–697. (2007) Zbl1130.14041MR2346950DOI10.1112/blms/bdm049
  41. LeBrun, C., Salamon, S., 10.1007/BF01231528, Invent. Math. 118 (1994), 109–132. (1994) MR1288469DOI10.1007/BF01231528
  42. Loday, P., Algebraic operads, Koszul duality and generalized bialgebras, Srní lectures, 2008. (2008) 
  43. Robles, C., Rigidity of the adjoint variety of 𝔰𝔩 n , preprint math.DG/0608471. 
  44. Sasaki, T., Yamaguchi, K., Yoshida, M., On the rigidity of differential systems modelled on Hermitian symmetric spaces and disproofs of a conjecture concerning modular interpretations of configuration spaces, CR-geometry and overdetermined systems (Osaka, 1994), Adv. Stud. Pure Math. 25, 318-354 (1997), 1997. (1997) Zbl0908.17013MR1476250
  45. Se-Ashi, Y., On differential invariants of integrable finite type linear differential equations, Hokkaido Math. J. 17 (2) (1988), 151–195. (1988) Zbl0664.34018MR0945853
  46. Vogel, P., The universal Lie algebra, preprint http://people.math.jussieu.fr/vogel/. 
  47. Yamaguchi, K., Differential systems associated with simple graded Lie algebras, Progress in differential geometry, Adv. Stud. Pure Math. 22, 1993. (1993) Zbl0812.17018MR1274961
  48. Yang, D., Involutive hyperbolic differential systems, Mem. Amer. Math. Soc. 68 (370) (1987), xii+93 pp. (1987) Zbl0639.35057MR0897707

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.