Lie group extensions associated to projective modules of continuous inverse algebras
Archivum Mathematicum (2008)
- Volume: 044, Issue: 5, page 465-489
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topNeeb, Karl-Hermann. "Lie group extensions associated to projective modules of continuous inverse algebras." Archivum Mathematicum 044.5 (2008): 465-489. <http://eudml.org/doc/250505>.
@article{Neeb2008,
abstract = {We call a unital locally convex algebra $A$ a continuous inverse algebra if its unit group $A^\times $ is open and inversion is a continuous map. For any smooth action of a, possibly infinite-dimensional, connected Lie group $G$ on a continuous inverse algebra $A$ by automorphisms and any finitely generated projective right $A$-module $E$, we construct a Lie group extension $\widehat\{G\}$ of $G$ by the group $\operatorname\{GL\}_A(E)$ of automorphisms of the $A$-module $E$. This Lie group extension is a “non-commutative” version of the group $\operatorname\{Aut\}(\{\mathbb \{V\}\})$ of automorphism of a vector bundle over a compact manifold $M$, which arises for $G = \operatorname\{Diff\}(M)$, $A = C^\infty (M,\{\mathbb \{C\}\})$ and $E = \Gamma \{\mathbb \{V\}\}$. We also identify the Lie algebra $\widehat\{\mathfrak \{g\}\}$ of $\widehat\{G\}$ and explain how it is related to connections of the $A$-module $E$.},
author = {Neeb, Karl-Hermann},
journal = {Archivum Mathematicum},
keywords = {continuous inverse algebra; infinite dimensional Lie group; vector bundle; projective module; semilinear automorphism; covariant derivative; connection; continuous inverse algebra; infinite dimensional Lie group; vector bundle; projective module; semilinear automorphism; covariant derivative; connection},
language = {eng},
number = {5},
pages = {465-489},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Lie group extensions associated to projective modules of continuous inverse algebras},
url = {http://eudml.org/doc/250505},
volume = {044},
year = {2008},
}
TY - JOUR
AU - Neeb, Karl-Hermann
TI - Lie group extensions associated to projective modules of continuous inverse algebras
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 5
SP - 465
EP - 489
AB - We call a unital locally convex algebra $A$ a continuous inverse algebra if its unit group $A^\times $ is open and inversion is a continuous map. For any smooth action of a, possibly infinite-dimensional, connected Lie group $G$ on a continuous inverse algebra $A$ by automorphisms and any finitely generated projective right $A$-module $E$, we construct a Lie group extension $\widehat{G}$ of $G$ by the group $\operatorname{GL}_A(E)$ of automorphisms of the $A$-module $E$. This Lie group extension is a “non-commutative” version of the group $\operatorname{Aut}({\mathbb {V}})$ of automorphism of a vector bundle over a compact manifold $M$, which arises for $G = \operatorname{Diff}(M)$, $A = C^\infty (M,{\mathbb {C}})$ and $E = \Gamma {\mathbb {V}}$. We also identify the Lie algebra $\widehat{\mathfrak {g}}$ of $\widehat{G}$ and explain how it is related to connections of the $A$-module $E$.
LA - eng
KW - continuous inverse algebra; infinite dimensional Lie group; vector bundle; projective module; semilinear automorphism; covariant derivative; connection; continuous inverse algebra; infinite dimensional Lie group; vector bundle; projective module; semilinear automorphism; covariant derivative; connection
UR - http://eudml.org/doc/250505
ER -
References
top- Abbati, M. C., Cirelli, R., Mania, A., Michor, P. W., 10.1016/0393-0440(89)90015-6, J. Geom. Phys. 6 (2) (1989), 215–235. (1989) MR1040392DOI10.1016/0393-0440(89)90015-6
- Bkouche, R., Idéaux mous d’un anneau commutatif. Applications aux anneaux de fonctions, C. R. Acad. Sci. Paris Sér. I Math. 260 (1965), 6496–6498. (1965) Zbl0142.28901MR0177002
- Blackadar, B., K-theory for operator algebras, Cambridge Univ. Press, 1998. (1998) Zbl0913.46054MR1656031
- Bratteli, O., Elliot, G. A., Goodman, F. M., Jorgensen, P. E. T., 10.1088/0951-7715/2/2/004, Nonlinearity 2 (1989), 271–286. (1989) MR0994093DOI10.1088/0951-7715/2/2/004
- Connes, A., Non-commutative Geometry, Academic Press, 1994. (1994)
- Dubois-Violette, M., Dérivations et calcul différentiel non-commutatif, C. R. Acad. Sci. Paris Sér. I Math. 307 (8) (1988), 403–408. (1988) Zbl0661.17012MR0965807
- Dubois-Violette, M., 10.1007/3-540-53763-5_42, Lecture Notes in Physics, Springer Verlag 375 (1991), 13–24. (1991) MR1134141DOI10.1007/3-540-53763-5_42
- Dubois-Violette, M., Kerner, R., Madore, J., 10.1063/1.528916, J. Math. Phys. 31 (2) (1990), 316–322. (1990) Zbl0704.53081MR1034167DOI10.1063/1.528916
- Dubois-Violette, M., Michor, P. W., Dérivations et calcul différentiel non commutatif. II, C. R. Acad. Sci. Paris Sér. I Math. 319 (9) (1994), 927–931. (1994) Zbl0829.16028MR1302791
- Elliott, G. A., The diffeomorphism group of the irrational rotation -algebra, C. R. Math. Acad. Sci. Soc. R. Can. 8 (5) (1986), 329–334. (1986) Zbl0617.46068MR0859436
- Glöckner, H., 10.4064/sm153-2-4, Studia Math. 153 (2002), 147–177. (2002) Zbl1009.22021MR1948922DOI10.4064/sm153-2-4
- Glöckner, H., Neeb, K.-H., Infinite-dimensional Lie groups, Vol. I, Basic Theory and Main Examples, book in preparation.
- Grabowski, J., Isomorphisms of algebras of smooth functions revisited, arXiv:math.DG/0310295v3. Zbl1082.46020MR2161810
- Gracia-Bondia, J. M., Vasilly, J. C., Figueroa, H., Elements of Non-commutative Geometry, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2001. (2001)
- Gramsch, B., 10.1007/BF01455995, Math. Ann. 269 (1984), 22–71. (1984) Zbl0661.47037MR0756775DOI10.1007/BF01455995
- Harris, B., 10.1007/BFb0080008, Algebraic K-theory, vol. 551, (Proc. Conf. Northwestern Univ., Evanston, Illinois), Lecture Notes in Math., Springer-Verlag, 1976, pp. 278–282. (1976) Zbl0405.20043MR0498570DOI10.1007/BFb0080008
- Harris, L. A., Kaup, W., Linear algebraic groups in infinite dimensions, Illinois J. Math. 21 (1977), 666–674. (1977) Zbl0385.22011MR0460551
- Jurčo, B., Schupp, P., Wess, J., Nonabelian noncommutative gauge theory via noncommutative extra dimensions, Nuclear Phys. B 604 (1-2) (2001), 148–180. (2001) Zbl0983.81054MR1840858
- Kosmann, Y., On Lie transformation groups and the covariance of differential operators, Math. Phys. Appl. Math., In: Differential geometry and relativity, Reidel, Dordrecht, vol. 3, 1976, pp. 75–89. (1976) Zbl0344.58020MR0438405
- Kriegl, A., Michor, P. W., The convenient setting of global analysis, Math. Surveys Monogr. 53 (1997), 618 pp. (1997) Zbl0889.58001MR1471480
- Madore, J., Masson, T., Mourad, J., 10.1088/0264-9381/12/6/009, Classical Quantum Gravity 12 (1995), 1429–1440. (1995) Zbl0824.58008MR1344279DOI10.1088/0264-9381/12/6/009
- Milnor, J., Remarks on infinite-dimensional Lie groups, Relativité, groupes et topologie II, (Les Houches, 1983), North Holland, Amsterdam (DeWitt, B. and Stora, R. eds.), 1984. (1984) Zbl0594.22009MR0830252
- Mrčun, J., On isomorphisms of algebras of smooth functions, arXiv:math.DG/0309179v4. MR2159792
- Neeb, K.-H., Infinite-dimensional Lie groups and their representations, Lie Theory (Lie Algebras and Representations, Progress in Math., Ed. J. P. Anker, B. Ørsted, Birkhäuser Verlag, ed.), 2004, pp. 213–328. (2004) MR2042690
- Neeb, K.-H., 10.1007/s11537-006-0606-y, Japan. J. Math. 3rd ser. 1 (2) (2006), 291–468. (2006) Zbl1161.22012MR2261066DOI10.1007/s11537-006-0606-y
- Neeb, K.-H., 10.5802/aif.2257, Ann. Inst. Fourier 56 (2007), 209–271. (2007) MR2316238DOI10.5802/aif.2257
- Neeb, K.-H., Wagemann, F., 10.1007/s10711-008-9244-2, Geom. Dedicata 134 (2008), 17–60. (2008) Zbl1143.22016MR2399649DOI10.1007/s10711-008-9244-2
- Rudin, W., Functional Analysis, McGraw Hill, 1973. (1973) Zbl0253.46001MR0365062
- Schupp, P., Non-Abelian gauge theory on non-commutative spaces, Internat. Europhysics Conference on HEP, arXiv:hep-th/0111083, 2001. (2001) MR1832107
- Swan, R. G., 10.1090/S0002-9947-1962-0143225-6, Trans. Amer. Math. Soc. 105 (1962), 264–277. (1962) Zbl0109.41601MR0143225DOI10.1090/S0002-9947-1962-0143225-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.