Lie group extensions associated to projective modules of continuous inverse algebras

Karl-Hermann Neeb

Archivum Mathematicum (2008)

  • Volume: 044, Issue: 5, page 465-489
  • ISSN: 0044-8753

Abstract

top
We call a unital locally convex algebra A a continuous inverse algebra if its unit group A × is open and inversion is a continuous map. For any smooth action of a, possibly infinite-dimensional, connected Lie group G on a continuous inverse algebra A by automorphisms and any finitely generated projective right A -module E , we construct a Lie group extension G ^ of G by the group GL A ( E ) of automorphisms of the A -module E . This Lie group extension is a “non-commutative” version of the group Aut ( 𝕍 ) of automorphism of a vector bundle over a compact manifold M , which arises for G = Diff ( M ) , A = C ( M , ) and E = Γ 𝕍 . We also identify the Lie algebra 𝔤 ^ of G ^ and explain how it is related to connections of the A -module E .

How to cite

top

Neeb, Karl-Hermann. "Lie group extensions associated to projective modules of continuous inverse algebras." Archivum Mathematicum 044.5 (2008): 465-489. <http://eudml.org/doc/250505>.

@article{Neeb2008,
abstract = {We call a unital locally convex algebra $A$ a continuous inverse algebra if its unit group $A^\times $ is open and inversion is a continuous map. For any smooth action of a, possibly infinite-dimensional, connected Lie group $G$ on a continuous inverse algebra $A$ by automorphisms and any finitely generated projective right $A$-module $E$, we construct a Lie group extension $\widehat\{G\}$ of $G$ by the group $\operatorname\{GL\}_A(E)$ of automorphisms of the $A$-module $E$. This Lie group extension is a “non-commutative” version of the group $\operatorname\{Aut\}(\{\mathbb \{V\}\})$ of automorphism of a vector bundle over a compact manifold $M$, which arises for $G = \operatorname\{Diff\}(M)$, $A = C^\infty (M,\{\mathbb \{C\}\})$ and $E = \Gamma \{\mathbb \{V\}\}$. We also identify the Lie algebra $\widehat\{\mathfrak \{g\}\}$ of $\widehat\{G\}$ and explain how it is related to connections of the $A$-module $E$.},
author = {Neeb, Karl-Hermann},
journal = {Archivum Mathematicum},
keywords = {continuous inverse algebra; infinite dimensional Lie group; vector bundle; projective module; semilinear automorphism; covariant derivative; connection; continuous inverse algebra; infinite dimensional Lie group; vector bundle; projective module; semilinear automorphism; covariant derivative; connection},
language = {eng},
number = {5},
pages = {465-489},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Lie group extensions associated to projective modules of continuous inverse algebras},
url = {http://eudml.org/doc/250505},
volume = {044},
year = {2008},
}

TY - JOUR
AU - Neeb, Karl-Hermann
TI - Lie group extensions associated to projective modules of continuous inverse algebras
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 5
SP - 465
EP - 489
AB - We call a unital locally convex algebra $A$ a continuous inverse algebra if its unit group $A^\times $ is open and inversion is a continuous map. For any smooth action of a, possibly infinite-dimensional, connected Lie group $G$ on a continuous inverse algebra $A$ by automorphisms and any finitely generated projective right $A$-module $E$, we construct a Lie group extension $\widehat{G}$ of $G$ by the group $\operatorname{GL}_A(E)$ of automorphisms of the $A$-module $E$. This Lie group extension is a “non-commutative” version of the group $\operatorname{Aut}({\mathbb {V}})$ of automorphism of a vector bundle over a compact manifold $M$, which arises for $G = \operatorname{Diff}(M)$, $A = C^\infty (M,{\mathbb {C}})$ and $E = \Gamma {\mathbb {V}}$. We also identify the Lie algebra $\widehat{\mathfrak {g}}$ of $\widehat{G}$ and explain how it is related to connections of the $A$-module $E$.
LA - eng
KW - continuous inverse algebra; infinite dimensional Lie group; vector bundle; projective module; semilinear automorphism; covariant derivative; connection; continuous inverse algebra; infinite dimensional Lie group; vector bundle; projective module; semilinear automorphism; covariant derivative; connection
UR - http://eudml.org/doc/250505
ER -

References

top
  1. Abbati, M. C., Cirelli, R., Mania, A., Michor, P. W., 10.1016/0393-0440(89)90015-6, J. Geom. Phys. 6 (2) (1989), 215–235. (1989) MR1040392DOI10.1016/0393-0440(89)90015-6
  2. Bkouche, R., Idéaux mous d’un anneau commutatif. Applications aux anneaux de fonctions, C. R. Acad. Sci. Paris Sér. I Math. 260 (1965), 6496–6498. (1965) Zbl0142.28901MR0177002
  3. Blackadar, B., K-theory for operator algebras, Cambridge Univ. Press, 1998. (1998) Zbl0913.46054MR1656031
  4. Bratteli, O., Elliot, G. A., Goodman, F. M., Jorgensen, P. E. T., 10.1088/0951-7715/2/2/004, Nonlinearity 2 (1989), 271–286. (1989) MR0994093DOI10.1088/0951-7715/2/2/004
  5. Connes, A., Non-commutative Geometry, Academic Press, 1994. (1994) 
  6. Dubois-Violette, M., Dérivations et calcul différentiel non-commutatif, C. R. Acad. Sci. Paris Sér. I Math. 307 (8) (1988), 403–408. (1988) Zbl0661.17012MR0965807
  7. Dubois-Violette, M., 10.1007/3-540-53763-5_42, Lecture Notes in Physics, Springer Verlag 375 (1991), 13–24. (1991) MR1134141DOI10.1007/3-540-53763-5_42
  8. Dubois-Violette, M., Kerner, R., Madore, J., 10.1063/1.528916, J. Math. Phys. 31 (2) (1990), 316–322. (1990) Zbl0704.53081MR1034167DOI10.1063/1.528916
  9. Dubois-Violette, M., Michor, P. W., Dérivations et calcul différentiel non commutatif. II, C. R. Acad. Sci. Paris Sér. I Math. 319 (9) (1994), 927–931. (1994) Zbl0829.16028MR1302791
  10. Elliott, G. A., The diffeomorphism group of the irrational rotation C * -algebra, C. R. Math. Acad. Sci. Soc. R. Can. 8 (5) (1986), 329–334. (1986) Zbl0617.46068MR0859436
  11. Glöckner, H., 10.4064/sm153-2-4, Studia Math. 153 (2002), 147–177. (2002) Zbl1009.22021MR1948922DOI10.4064/sm153-2-4
  12. Glöckner, H., Neeb, K.-H., Infinite-dimensional Lie groups, Vol. I, Basic Theory and Main Examples, book in preparation. 
  13. Grabowski, J., Isomorphisms of algebras of smooth functions revisited, arXiv:math.DG/0310295v3. Zbl1082.46020MR2161810
  14. Gracia-Bondia, J. M., Vasilly, J. C., Figueroa, H., Elements of Non-commutative Geometry, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2001. (2001) 
  15. Gramsch, B., 10.1007/BF01455995, Math. Ann. 269 (1984), 22–71. (1984) Zbl0661.47037MR0756775DOI10.1007/BF01455995
  16. Harris, B., 10.1007/BFb0080008, Algebraic K-theory, vol. 551, (Proc. Conf. Northwestern Univ., Evanston, Illinois), Lecture Notes in Math., Springer-Verlag, 1976, pp. 278–282. (1976) Zbl0405.20043MR0498570DOI10.1007/BFb0080008
  17. Harris, L. A., Kaup, W., Linear algebraic groups in infinite dimensions, Illinois J. Math. 21 (1977), 666–674. (1977) Zbl0385.22011MR0460551
  18. Jurčo, B., Schupp, P., Wess, J., Nonabelian noncommutative gauge theory via noncommutative extra dimensions, Nuclear Phys. B 604 (1-2) (2001), 148–180. (2001) Zbl0983.81054MR1840858
  19. Kosmann, Y., On Lie transformation groups and the covariance of differential operators, Math. Phys. Appl. Math., In: Differential geometry and relativity, Reidel, Dordrecht, vol. 3, 1976, pp. 75–89. (1976) Zbl0344.58020MR0438405
  20. Kriegl, A., Michor, P. W., The convenient setting of global analysis, Math. Surveys Monogr. 53 (1997), 618 pp. (1997) Zbl0889.58001MR1471480
  21. Madore, J., Masson, T., Mourad, J., 10.1088/0264-9381/12/6/009, Classical Quantum Gravity 12 (1995), 1429–1440. (1995) Zbl0824.58008MR1344279DOI10.1088/0264-9381/12/6/009
  22. Milnor, J., Remarks on infinite-dimensional Lie groups, Relativité, groupes et topologie II, (Les Houches, 1983), North Holland, Amsterdam (DeWitt, B. and Stora, R. eds.), 1984. (1984) Zbl0594.22009MR0830252
  23. Mrčun, J., On isomorphisms of algebras of smooth functions, arXiv:math.DG/0309179v4. MR2159792
  24. Neeb, K.-H., Infinite-dimensional Lie groups and their representations, Lie Theory (Lie Algebras and Representations, Progress in Math., Ed. J. P. Anker, B. Ørsted, Birkhäuser Verlag, ed.), 2004, pp. 213–328. (2004) MR2042690
  25. Neeb, K.-H., 10.1007/s11537-006-0606-y, Japan. J. Math. 3rd ser. 1 (2) (2006), 291–468. (2006) Zbl1161.22012MR2261066DOI10.1007/s11537-006-0606-y
  26. Neeb, K.-H., 10.5802/aif.2257, Ann. Inst. Fourier 56 (2007), 209–271. (2007) MR2316238DOI10.5802/aif.2257
  27. Neeb, K.-H., Wagemann, F., 10.1007/s10711-008-9244-2, Geom. Dedicata 134 (2008), 17–60. (2008) Zbl1143.22016MR2399649DOI10.1007/s10711-008-9244-2
  28. Rudin, W., Functional Analysis, McGraw Hill, 1973. (1973) Zbl0253.46001MR0365062
  29. Schupp, P., Non-Abelian gauge theory on non-commutative spaces, Internat. Europhysics Conference on HEP, arXiv:hep-th/0111083, 2001. (2001) MR1832107
  30. Swan, R. G., 10.1090/S0002-9947-1962-0143225-6, Trans. Amer. Math. Soc. 105 (1962), 264–277. (1962) Zbl0109.41601MR0143225DOI10.1090/S0002-9947-1962-0143225-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.