Non-abelian extensions of infinite-dimensional Lie groups

Karl-Hermann Neeb[1]

  • [1] Technische Universität Darmstadt Schlossgartenstrasse 7 64289 Darmstadt(Deutschland)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 1, page 209-271
  • ISSN: 0373-0956

Abstract

top
In this article we study non-abelian extensions of a Lie group G modeled on a locally convex space by a Lie group N . The equivalence classes of such extension are grouped into those corresponding to a class of so-called smooth outer actions S of G on N . If S is given, we show that the corresponding set Ext ( G , N ) S of extension classes is a principal homogeneous space of the locally smooth cohomology group H s s 2 ( G , Z ( N ) ) S . To each S a locally smooth obstruction class χ ( S ) in a suitably defined cohomology group H s s 3 ( G , Z ( N ) ) S is defined. It vanishes if and only if there is a corresponding extension of G by N . A central point is that we reduce many problems concerning extensions by non-abelian groups to questions on extensions by abelian groups, which have been dealt with in previous work. An important tool is a Lie theoretic concept of a smooth crossed module α : H G , which we view as a central extension of a normal subgroup of G .

How to cite

top

Neeb, Karl-Hermann. "Non-abelian extensions of infinite-dimensional Lie groups." Annales de l’institut Fourier 57.1 (2007): 209-271. <http://eudml.org/doc/10220>.

@article{Neeb2007,
abstract = {In this article we study non-abelian extensions of a Lie group $G$ modeled on a locally convex space by a Lie group $N$. The equivalence classes of such extension are grouped into those corresponding to a class of so-called smooth outer actions $S$ of $G$ on $N$. If $S$ is given, we show that the corresponding set $\{\rm Ext\}(G,N)_S$ of extension classes is a principal homogeneous space of the locally smooth cohomology group $H^2_\{ss\}(G,Z(N))_S$. To each $S$ a locally smooth obstruction class $ \chi (S)$ in a suitably defined cohomology group $H^3_\{ss\}(G,Z(N))_S$ is defined. It vanishes if and only if there is a corresponding extension of $G$ by $N$. A central point is that we reduce many problems concerning extensions by non-abelian groups to questions on extensions by abelian groups, which have been dealt with in previous work. An important tool is a Lie theoretic concept of a smooth crossed module $\alpha \colon H \rightarrow G$, which we view as a central extension of a normal subgroup of $G$.},
affiliation = {Technische Universität Darmstadt Schlossgartenstrasse 7 64289 Darmstadt(Deutschland)},
author = {Neeb, Karl-Hermann},
journal = {Annales de l’institut Fourier},
keywords = {Lie group extension; smooth outer action; crossed module; Lie group cohomology; automorphisms of group extension},
language = {eng},
number = {1},
pages = {209-271},
publisher = {Association des Annales de l’institut Fourier},
title = {Non-abelian extensions of infinite-dimensional Lie groups},
url = {http://eudml.org/doc/10220},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Neeb, Karl-Hermann
TI - Non-abelian extensions of infinite-dimensional Lie groups
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 1
SP - 209
EP - 271
AB - In this article we study non-abelian extensions of a Lie group $G$ modeled on a locally convex space by a Lie group $N$. The equivalence classes of such extension are grouped into those corresponding to a class of so-called smooth outer actions $S$ of $G$ on $N$. If $S$ is given, we show that the corresponding set ${\rm Ext}(G,N)_S$ of extension classes is a principal homogeneous space of the locally smooth cohomology group $H^2_{ss}(G,Z(N))_S$. To each $S$ a locally smooth obstruction class $ \chi (S)$ in a suitably defined cohomology group $H^3_{ss}(G,Z(N))_S$ is defined. It vanishes if and only if there is a corresponding extension of $G$ by $N$. A central point is that we reduce many problems concerning extensions by non-abelian groups to questions on extensions by abelian groups, which have been dealt with in previous work. An important tool is a Lie theoretic concept of a smooth crossed module $\alpha \colon H \rightarrow G$, which we view as a central extension of a normal subgroup of $G$.
LA - eng
KW - Lie group extension; smooth outer action; crossed module; Lie group cohomology; automorphisms of group extension
UR - http://eudml.org/doc/10220
ER -

References

top
  1. R. Baer, Erweiterungen von Gruppen und ihren Isomorphismen, Math. Zeit. 38 (1934), 375-416 Zbl0009.01101MR1545456
  2. Mikhail V. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J. 72 (1993), 217-239 Zbl0849.12011MR1242885
  3. Lawrence G. Brown, Extensions of topological groups, Pacific J. Math. 39 (1971), 71-78 Zbl0241.22004MR307264
  4. Lorenzo Calabi, Sur les extensions des groupes topologiques, Ann. Mat. Pura Appl. (4) 32 (1951), 295-370 Zbl0054.01302MR49907
  5. Martin Cederwall, Gabriele Ferretti, Bengt E. W. Nilsson, Anders Westerberg, Higher-dimensional loop algebras, non-abelian extensions and p -branes, Nuclear Phys. B. 424 (1994), 97-123 Zbl0990.81527MR1290024
  6. Samuel Eilenberg, Saunders MacLane, Group extensions and homology, Ann. of Math. (2) 43 (1942), 757-831 Zbl0061.40602MR7108
  7. Samuel Eilenberg, Saunders MacLane, Cohomology theory in abstract groups. II. Group extensions with a non-Abelian kernel, Ann. of Math. (2) 48 (1947), 326-341 Zbl0029.34101MR20996
  8. Helge Glöckner, Infinite-dimensional Lie groups without completeness condition, Geometry and analysis on finite- and infinite-dimensional Lie groups 55 (2002), 53-59, Banach Center Publications, Warsawa Zbl1020.58009
  9. Morikuni Goto, On an arcwise connected subgroup of a Lie group, Proc. Amer. Math. Soc. 20 (1969), 157-162 Zbl0182.04602MR233923
  10. Johannes Huebschmann, Automorphisms of group extensions and differentials in the Lyndon-Hochschild-Serre spectral sequence, J. Algebra 72 (1981), 296-334 Zbl0443.18018MR641328
  11. Andreas Kriegl, Peter W. Michor, The convenient setting of global analysis, 53 (1997), American Mathematical Society, Providence, RI Zbl0889.58001MR1471480
  12. George W. Mackey, Les ensembles boréliens et les extensions des groupes, J. Math. Pures Appl. (9) 36 (1957), 171-178 Zbl0080.02303MR89998
  13. S. MacLane, Homological Algebra, (1963), Springer-Verlag 
  14. J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958), 215-223 Zbl0196.25101MR95518
  15. J. Milnor, Remarks on infinite-dimensional Lie groups, Relativity, groups and topology, II (Les Houches, 1983) (1984), 1007-1057, North-Holland, Amsterdam Zbl0594.22009MR830252
  16. Calvin C. Moore, Extensions and low dimensional cohomology theory of locally compact groups. I, II, Trans. Amer. Math. Soc. 113 (1964), 40-63, 63–86 Zbl0131.26902
  17. Karl-Hermann Neeb, Exact sequences for Lie group cohomology with non-abelian coefficients Zbl1158.17308
  18. Karl-Hermann Neeb, Central extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier (Grenoble) 52 (2002), 1365-1442 Zbl1019.22012MR1935553
  19. Karl-Hermann Neeb, Abelian extensions of infinite-dimensional Lie groups, Travaux mathématiques. Fasc. XV (2004), 69-194, Univ. Luxemb., Luxembourg Zbl1079.22018MR2143422
  20. Karl-Hermann Neeb, Non-abelian extensions of topological Lie algebras, Comm. Algebra 34 (2006), 991-1041 Zbl1158.17308MR2208114
  21. Iain Raeburn, Aidan Sims, Dana P. Williams, Twisted actions and obstructions in group cohomology, -algebras (Münster, 1999) (2000), 161-181, Springer, Berlin Zbl0984.46044MR1798596
  22. Derek J. S. Robinson, Automorphisms of group extensions, Algebra and its applications (New Delhi, 1981) 91 (1984), 163-167, Dekker, New York Zbl0541.20018MR750857
  23. O. Schreier, Über die Erweiterungen von Gruppen I, Monatshefte f. Math. 34 (1926), 165-180 Zbl52.0113.04MR1549403
  24. O. Schreier, Über die Erweiterungen von Gruppen II, Abhandlungen Hamburg 4 (1926), 321-346 
  25. A. M. Turing, The extensions of a group, Compos. Math. 5 (1938), 357-367 Zbl0018.39201
  26. V. S. Varadarajan, Geometry of quantum theory, (1985), Springer-Verlag, New York Zbl0581.46061MR805158
  27. Charles A. Weibel, An introduction to homological algebra, 38 (1994), Cambridge University Press, Cambridge Zbl0797.18001MR1269324
  28. Charles Wells, Automorphisms of group extensions, Trans. Amer. Math. Soc. 155 (1971), 189-194 Zbl0221.20054MR272898

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.