Non-abelian extensions of infinite-dimensional Lie groups
- [1] Technische Universität Darmstadt Schlossgartenstrasse 7 64289 Darmstadt(Deutschland)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 1, page 209-271
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNeeb, Karl-Hermann. "Non-abelian extensions of infinite-dimensional Lie groups." Annales de l’institut Fourier 57.1 (2007): 209-271. <http://eudml.org/doc/10220>.
@article{Neeb2007,
abstract = {In this article we study non-abelian extensions of a Lie group $G$ modeled on a locally convex space by a Lie group $N$. The equivalence classes of such extension are grouped into those corresponding to a class of so-called smooth outer actions $S$ of $G$ on $N$. If $S$ is given, we show that the corresponding set $\{\rm Ext\}(G,N)_S$ of extension classes is a principal homogeneous space of the locally smooth cohomology group $H^2_\{ss\}(G,Z(N))_S$. To each $S$ a locally smooth obstruction class $ \chi (S)$ in a suitably defined cohomology group $H^3_\{ss\}(G,Z(N))_S$ is defined. It vanishes if and only if there is a corresponding extension of $G$ by $N$. A central point is that we reduce many problems concerning extensions by non-abelian groups to questions on extensions by abelian groups, which have been dealt with in previous work. An important tool is a Lie theoretic concept of a smooth crossed module $\alpha \colon H \rightarrow G$, which we view as a central extension of a normal subgroup of $G$.},
affiliation = {Technische Universität Darmstadt Schlossgartenstrasse 7 64289 Darmstadt(Deutschland)},
author = {Neeb, Karl-Hermann},
journal = {Annales de l’institut Fourier},
keywords = {Lie group extension; smooth outer action; crossed module; Lie group cohomology; automorphisms of group extension},
language = {eng},
number = {1},
pages = {209-271},
publisher = {Association des Annales de l’institut Fourier},
title = {Non-abelian extensions of infinite-dimensional Lie groups},
url = {http://eudml.org/doc/10220},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Neeb, Karl-Hermann
TI - Non-abelian extensions of infinite-dimensional Lie groups
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 1
SP - 209
EP - 271
AB - In this article we study non-abelian extensions of a Lie group $G$ modeled on a locally convex space by a Lie group $N$. The equivalence classes of such extension are grouped into those corresponding to a class of so-called smooth outer actions $S$ of $G$ on $N$. If $S$ is given, we show that the corresponding set ${\rm Ext}(G,N)_S$ of extension classes is a principal homogeneous space of the locally smooth cohomology group $H^2_{ss}(G,Z(N))_S$. To each $S$ a locally smooth obstruction class $ \chi (S)$ in a suitably defined cohomology group $H^3_{ss}(G,Z(N))_S$ is defined. It vanishes if and only if there is a corresponding extension of $G$ by $N$. A central point is that we reduce many problems concerning extensions by non-abelian groups to questions on extensions by abelian groups, which have been dealt with in previous work. An important tool is a Lie theoretic concept of a smooth crossed module $\alpha \colon H \rightarrow G$, which we view as a central extension of a normal subgroup of $G$.
LA - eng
KW - Lie group extension; smooth outer action; crossed module; Lie group cohomology; automorphisms of group extension
UR - http://eudml.org/doc/10220
ER -
References
top- R. Baer, Erweiterungen von Gruppen und ihren Isomorphismen, Math. Zeit. 38 (1934), 375-416 Zbl0009.01101MR1545456
- Mikhail V. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J. 72 (1993), 217-239 Zbl0849.12011MR1242885
- Lawrence G. Brown, Extensions of topological groups, Pacific J. Math. 39 (1971), 71-78 Zbl0241.22004MR307264
- Lorenzo Calabi, Sur les extensions des groupes topologiques, Ann. Mat. Pura Appl. (4) 32 (1951), 295-370 Zbl0054.01302MR49907
- Martin Cederwall, Gabriele Ferretti, Bengt E. W. Nilsson, Anders Westerberg, Higher-dimensional loop algebras, non-abelian extensions and -branes, Nuclear Phys. B. 424 (1994), 97-123 Zbl0990.81527MR1290024
- Samuel Eilenberg, Saunders MacLane, Group extensions and homology, Ann. of Math. (2) 43 (1942), 757-831 Zbl0061.40602MR7108
- Samuel Eilenberg, Saunders MacLane, Cohomology theory in abstract groups. II. Group extensions with a non-Abelian kernel, Ann. of Math. (2) 48 (1947), 326-341 Zbl0029.34101MR20996
- Helge Glöckner, Infinite-dimensional Lie groups without completeness condition, Geometry and analysis on finite- and infinite-dimensional Lie groups 55 (2002), 53-59, Banach Center Publications, Warsawa Zbl1020.58009
- Morikuni Goto, On an arcwise connected subgroup of a Lie group, Proc. Amer. Math. Soc. 20 (1969), 157-162 Zbl0182.04602MR233923
- Johannes Huebschmann, Automorphisms of group extensions and differentials in the Lyndon-Hochschild-Serre spectral sequence, J. Algebra 72 (1981), 296-334 Zbl0443.18018MR641328
- Andreas Kriegl, Peter W. Michor, The convenient setting of global analysis, 53 (1997), American Mathematical Society, Providence, RI Zbl0889.58001MR1471480
- George W. Mackey, Les ensembles boréliens et les extensions des groupes, J. Math. Pures Appl. (9) 36 (1957), 171-178 Zbl0080.02303MR89998
- S. MacLane, Homological Algebra, (1963), Springer-Verlag
- J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958), 215-223 Zbl0196.25101MR95518
- J. Milnor, Remarks on infinite-dimensional Lie groups, Relativity, groups and topology, II (Les Houches, 1983) (1984), 1007-1057, North-Holland, Amsterdam Zbl0594.22009MR830252
- Calvin C. Moore, Extensions and low dimensional cohomology theory of locally compact groups. I, II, Trans. Amer. Math. Soc. 113 (1964), 40-63, 63–86 Zbl0131.26902
- Karl-Hermann Neeb, Exact sequences for Lie group cohomology with non-abelian coefficients Zbl1158.17308
- Karl-Hermann Neeb, Central extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier (Grenoble) 52 (2002), 1365-1442 Zbl1019.22012MR1935553
- Karl-Hermann Neeb, Abelian extensions of infinite-dimensional Lie groups, Travaux mathématiques. Fasc. XV (2004), 69-194, Univ. Luxemb., Luxembourg Zbl1079.22018MR2143422
- Karl-Hermann Neeb, Non-abelian extensions of topological Lie algebras, Comm. Algebra 34 (2006), 991-1041 Zbl1158.17308MR2208114
- Iain Raeburn, Aidan Sims, Dana P. Williams, Twisted actions and obstructions in group cohomology, -algebras (Münster, 1999) (2000), 161-181, Springer, Berlin Zbl0984.46044MR1798596
- Derek J. S. Robinson, Automorphisms of group extensions, Algebra and its applications (New Delhi, 1981) 91 (1984), 163-167, Dekker, New York Zbl0541.20018MR750857
- O. Schreier, Über die Erweiterungen von Gruppen I, Monatshefte f. Math. 34 (1926), 165-180 Zbl52.0113.04MR1549403
- O. Schreier, Über die Erweiterungen von Gruppen II, Abhandlungen Hamburg 4 (1926), 321-346
- A. M. Turing, The extensions of a group, Compos. Math. 5 (1938), 357-367 Zbl0018.39201
- V. S. Varadarajan, Geometry of quantum theory, (1985), Springer-Verlag, New York Zbl0581.46061MR805158
- Charles A. Weibel, An introduction to homological algebra, 38 (1994), Cambridge University Press, Cambridge Zbl0797.18001MR1269324
- Charles Wells, Automorphisms of group extensions, Trans. Amer. Math. Soc. 155 (1971), 189-194 Zbl0221.20054MR272898
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.