Classification of principal connections naturally induced on
Archivum Mathematicum (2008)
- Volume: 044, Issue: 5, page 535-547
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topVondra, Jan. "Classification of principal connections naturally induced on $W^2PE$." Archivum Mathematicum 044.5 (2008): 535-547. <http://eudml.org/doc/250508>.
@article{Vondra2008,
abstract = {We consider a vector bundle $E\rightarrow M$ and the principal bundle $PE$ of frames of $E$. Let $K$ be a principal connection on $PE$ and let $\Lambda $ be a linear connection on $M$. We classify all principal connections on $W^2PE= P^2M\times _M J^2PE$ naturally given by $K$ and $\Lambda $.},
author = {Vondra, Jan},
journal = {Archivum Mathematicum},
keywords = {natural bundle; gauge-natural bundle; natural operator; principal bundle; principal connection; natural bundle; gauge-natural bundle; natural operator; principal bundle; principal connection},
language = {eng},
number = {5},
pages = {535-547},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Classification of principal connections naturally induced on $W^2PE$},
url = {http://eudml.org/doc/250508},
volume = {044},
year = {2008},
}
TY - JOUR
AU - Vondra, Jan
TI - Classification of principal connections naturally induced on $W^2PE$
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 5
SP - 535
EP - 547
AB - We consider a vector bundle $E\rightarrow M$ and the principal bundle $PE$ of frames of $E$. Let $K$ be a principal connection on $PE$ and let $\Lambda $ be a linear connection on $M$. We classify all principal connections on $W^2PE= P^2M\times _M J^2PE$ naturally given by $K$ and $\Lambda $.
LA - eng
KW - natural bundle; gauge-natural bundle; natural operator; principal bundle; principal connection; natural bundle; gauge-natural bundle; natural operator; principal bundle; principal connection
UR - http://eudml.org/doc/250508
ER -
References
top- Doupovec, M., Mikulski, W. M., Reduction theorems for principal and classical connections, to appear.
- Doupovec, M., Mikulski, W. M., 10.1016/S0034-4877(07)80141-8, Rep. Math. Phys. 60 (2007), 299–316. (2007) MR2374824DOI10.1016/S0034-4877(07)80141-8
- Eck, D. J., Gauge-natural bundles and generalized gauge theories, Mem. Amer. Math. Soc. 247 (1981), 48p. (1981) Zbl0493.53052MR0632164
- Fatibene, L., Francaviglia, M., Natural and Gauge Natural Formalism for Classical Field Theories, Kluwer Academic Publishers, Dordrecht-Boston-London, 2003. (2003) Zbl1138.81303MR2039451
- Janyška, J., On the curvature of tensor product connections and covariant differentials, Rend. Circ. Mat. Palermo (2) Suppl. 72 (2004), 135–143. (2004) Zbl1051.53017MR2069401
- Janyška, J., 10.1016/j.difgeo.2003.10.006, Differential Geom. Appl. 20 (2004), 177–196. (2004) Zbl1108.53016MR2038554DOI10.1016/j.difgeo.2003.10.006
- Janyška, J., 10.2478/BF02479205, Cent. Eur. J. Math. 3 (2005), 294–308. (2005) Zbl1114.53018MR2129910DOI10.2478/BF02479205
- Kolář, I., Some natural operators in differential geometry, Differential Geom. Appl., D. Reidel, 1987, pp. 91–110. (1987) MR0923346
- Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer–Verlag, 1993. (1993) MR1202431
- Kolář, I., Virsik, G., Connections in first principal prolongations, Rend. Circ. Mat. Palermo (2) Suppl. 43 (1996), 163–171. (1996) MR1463518
- Krupka, D., Janyška, J., Lectures on Differential Invariants, Folia Fac. Sci. Natur. Univ. Purkynian. Brun. Math., 1990. (1990) MR1108622
- Nijenhuis, A., Natural bundles and their general properties, Differential Geom. (1972), 317–334, In honour of K. Yano, Kinokuniya, Tokyo. (1972) Zbl0246.53018MR0380862
- Terng, C. L., 10.2307/2373910, Amer. J. Math. 100 (1978), 775–823. (1978) Zbl0422.58001MR0509074DOI10.2307/2373910
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.