Higher order valued reduction theorems for classical connections
Open Mathematics (2005)
- Volume: 3, Issue: 2, page 294-308
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topJosef Janyška. "Higher order valued reduction theorems for classical connections." Open Mathematics 3.2 (2005): 294-308. <http://eudml.org/doc/268789>.
@article{JosefJanyška2005,
abstract = {We generalize reduction theorems for classical connections to operators with values in k-th order natural bundles. Using the 2nd order valued reduction theorems we classify all (0,2)-tensor fields on the cotangent bundle of a manifold with a linear (non-symmetric) connection.},
author = {Josef Janyška},
journal = {Open Mathematics},
keywords = {53C05; 58A32; 58A20},
language = {eng},
number = {2},
pages = {294-308},
title = {Higher order valued reduction theorems for classical connections},
url = {http://eudml.org/doc/268789},
volume = {3},
year = {2005},
}
TY - JOUR
AU - Josef Janyška
TI - Higher order valued reduction theorems for classical connections
JO - Open Mathematics
PY - 2005
VL - 3
IS - 2
SP - 294
EP - 308
AB - We generalize reduction theorems for classical connections to operators with values in k-th order natural bundles. Using the 2nd order valued reduction theorems we classify all (0,2)-tensor fields on the cotangent bundle of a manifold with a linear (non-symmetric) connection.
LA - eng
KW - 53C05; 58A32; 58A20
UR - http://eudml.org/doc/268789
ER -
References
top- [1] E. B. Christoffel: “Ueber die Transformation der homogenen Differentialausdücke zweiten Grades”, Journal für die reine und angewandte Mathematik, Crelles's Journals, Vol. 70, (1869), pp. 46–70. http://dx.doi.org/10.1515/crll.1869.70.46
- [2] J. Janyška: “Natural symplectic structures on the tangent bundle of a space-time”, In: Proc. of the 15th Winter School Geometry and Physics, Srní (Czech Republic), 1995; Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, Vol. 43, (1996), pp. 153–162.
- [3] J. Janyška: “Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold”, Arch. Math. (Brno), Vol. 37, (2001), pp. 143–160. Zbl1090.58007
- [4] J. Janyška: “On the curvature of tensor product connections and covariant differentials”, In: Proc. of the 23rd Winter School Geometry and Physics, Srní (Czech Republic) 2003; Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, Vol. 72, (2004), pp. 135–143. Zbl1051.53017
- [5] I. Kolář, P.W. Michor and J. Slovák: Natural Operations in Differential Geometry, Springer-Verlag, 1993. Zbl0782.53013
- [6] O. Kowalski and M. Sekizawa: “Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles-a classification”, Bull. Tokyo Gakugei Univ., Sect. IV, Vol. 40, (1988), pp. 1–29. Zbl0656.53021
- [7] D. Krupka: “Local invariants of a linear connection”, In: Colloq. Math. Societatis János Bolyai, 31. Diff. Geom., Budapest 1979, North Holland, 1982, pp. 349–369.
- [8] D. Krupka and J. Janyška: Lectures on Differential Invariants, Folia Fac. Sci. Nat. Univ. Purkynianae Brunensis, Brno, 1990. Zbl0752.53004
- [9] G. Lubczonok: “On reduction theorems”, Ann. Polon. Math., Vol. 26, (1972), pp. 125–133. Zbl0244.53011
- [10] A. Nijenhuis: “Natural bundles and their general properties”, Diff. Geom., in honour of K. Yano, Kinokuniya, Tokyo, 1972, pp. 317–334.
- [11] G. Ricci and T. Levi Civita: “Méthodes de calcul différentiel absolu et leurs applications”, Math. Ann., Vol. 54, (1901), pp. 125–201. http://dx.doi.org/10.1007/BF01454201 Zbl31.0297.01
- [12] J.A. Schouten: Ricci calculus, Berlin-Göttingen, 1954.
- [13] M. Sekizawa: “Natural transformations of affine connections of manifolds to metrics on cotangent bundles”, In: Proc. of the 14th Winter School on Abstract Analysis, Srní (Czech Republic), 1986; Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, Vol. 14, (1987), pp. 129–142.
- [14] M. Sekizawa: “Natural transformations of vector fields on manifolds to vector fields on tangent bundles”, Tsukuba J. Math., Vol. 12, (1988), pp. 115–128. Zbl0657.53009
- [15] C.L. Terng: “Natural vector bundles and natural differential operators”, Am. J. Math., Vol. 100, (1978), pp. 775–828. http://dx.doi.org/10.2307/2373910 Zbl0422.58001
- [16] T.Y. Thomas and A.D. Michal: “Differential invariants of affinely connected manifolds”, Ann. Math., Vol. 28, (1927), pp. 196–236. http://dx.doi.org/10.2307/1968367 Zbl53.0684.02
- [17] R. Utiyama: “Invariant theoretical interpretation of interaction”, Phys. Rev., Vol. 101, (1956), pp. 1597–1607. http://dx.doi.org/10.1103/PhysRev.101.1597 Zbl0070.22102
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.