On the difference equation x n + 1 = a 0 x n + a 1 x n - 1 + + a k x n - k b 0 x n + b 1 x n - 1 + + b k x n - k

Elmetwally M. Elabbasy; Hamdy El-Metwally; E. M. Elsayed

Mathematica Bohemica (2008)

  • Volume: 133, Issue: 2, page 133-147
  • ISSN: 0862-7959

Abstract

top
In this paper we investigate the global convergence result, boundedness and periodicity of solutions of the recursive sequence x n + 1 = a 0 x n + a 1 x n - 1 + + a k x n - k b 0 x n + b 1 x n - 1 + + b k x n - k , n = 0 , 1 , where the parameters a i and b i for i = 0 , 1 , , k are positive real numbers and the initial conditions x - k , x - k + 1 , , x 0 are arbitrary positive numbers.

How to cite

top

Elabbasy, Elmetwally M., El-Metwally, Hamdy, and Elsayed, E. M.. "On the difference equation $x_{n+1}=\dfrac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}} $." Mathematica Bohemica 133.2 (2008): 133-147. <http://eudml.org/doc/250521>.

@article{Elabbasy2008,
abstract = {In this paper we investigate the global convergence result, boundedness and periodicity of solutions of the recursive sequence \[ x\_\{n+1\}=\frac\{a\_\{0\}x\_\{n\}+a\_\{1\}x\_\{n-1\}+\dots +a\_\{k\}x\_\{n-k\}\}\{b\_\{0\}x\_\{n\}+b\_\{1\}x\_\{n-1\}+\dots +b\_\{k\}x\_\{n-k\}\},\,\,\,n=0,1,\dots \,\ \] where the parameters $ a_\{i\}$ and $b_\{i\}$ for $i=0,1,\dots ,k$ are positive real numbers and the initial conditions $x_\{-k\},x_\{-k+1\},\dots ,x_\{0\}$ are arbitrary positive numbers.},
author = {Elabbasy, Elmetwally M., El-Metwally, Hamdy, Elsayed, E. M.},
journal = {Mathematica Bohemica},
keywords = {stability; periodic solution; difference equation; stability; periodic solution; rational difference equation; global convergence; boundedness; recursive sequence},
language = {eng},
number = {2},
pages = {133-147},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the difference equation $x_\{n+1\}=\dfrac\{a_\{0\}x_\{n\}+a_\{1\}x_\{n-1\}+\dots +a_\{k\}x_\{n-k\}\}\{b_\{0\}x_\{n\}+b_\{1\}x_\{n-1\}+\dots +b_\{k\}x_\{n-k\}\} $},
url = {http://eudml.org/doc/250521},
volume = {133},
year = {2008},
}

TY - JOUR
AU - Elabbasy, Elmetwally M.
AU - El-Metwally, Hamdy
AU - Elsayed, E. M.
TI - On the difference equation $x_{n+1}=\dfrac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}} $
JO - Mathematica Bohemica
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 133
IS - 2
SP - 133
EP - 147
AB - In this paper we investigate the global convergence result, boundedness and periodicity of solutions of the recursive sequence \[ x_{n+1}=\frac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}},\,\,\,n=0,1,\dots \,\ \] where the parameters $ a_{i}$ and $b_{i}$ for $i=0,1,\dots ,k$ are positive real numbers and the initial conditions $x_{-k},x_{-k+1},\dots ,x_{0}$ are arbitrary positive numbers.
LA - eng
KW - stability; periodic solution; difference equation; stability; periodic solution; rational difference equation; global convergence; boundedness; recursive sequence
UR - http://eudml.org/doc/250521
ER -

References

top
  1. On the periodic nature of some max-type difference equation, Int. J. Math. Math. Sci. 14 (2005), 2227–2239. (2005) MR2177819
  2. On the difference equation x n + 1 = α x n - k β + γ i = 0 k x n - i , J. Conc. Appl. Math. 5 (2007), 101–113. (2007) MR2292704
  3. 10.1080/10236190108808306, J. Difference Equ. Appl. 7 (2001), 837–850. (2001) MR1870725DOI10.1080/10236190108808306
  4. On the difference equation y n + 1 = ( y n - ( 2 k + 1 ) + p ) ( y n - ( 2 k + 1 ) + q y n - 2 l ) , Proceedings of the 6th ICDE, Taylor and Francis, London, 2004. (2004) MR2092580
  5. 10.1080/10236190008808232, J. Difference Equ. Appl. 6 (2000), 329–335. (2000) Zbl0963.39020MR1785059DOI10.1080/10236190008808232
  6. Convergence of a difference equation via the full limiting sequences method, Diff. Equ. Dyn. Sys. 1 (1993), 289–294. (1993) Zbl0868.39002MR1259169
  7. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993. (1993) MR1247956
  8. On the recursive sequence y n + 1 = p + y n - 1 q y n + y n - 1 , J. Math. Anal. Appl. 251 (2001), 571–586. (2001) MR1794759
  9. 10.1016/S0898-1221(00)00311-4, Comput. Math. Appl. 41 (2001), 671–678. (2001) MR1822594DOI10.1016/S0898-1221(00)00311-4
  10. On the recursive sequence x n + 1 = ( α x n + β x n - 1 ) / ( A + x n ) , J. Difference Equ. Appl. 6 (2000), 563–576. (2000) MR1802447
  11. On the recursive sequence x n + 1 = ( α x n + β x n - 1 ) / ( γ x n + δ x n - 1 ) , Math. Sci. Res. Hot-Line 2 (1998), 1–16. (1998) MR1623643
  12. 10.1016/j.amc.2004.04.002, Appl. Math. Comp. 163 (2005), 577–591. (2005) MR2121812DOI10.1016/j.amc.2004.04.002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.