On the rational recursive sequence
E. M. E. Zayed; M. A. El-Moneam
Mathematica Bohemica (2010)
- Volume: 135, Issue: 3, page 319-336
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topZayed, E. M. E., and El-Moneam, M. A.. "On the rational recursive sequence $ x_{n+1}=\dfrac{\alpha _0x_n+\alpha _1x_{n-l}+\alpha _2x_{n-k}}{\beta _0x_n+\beta _1x_{n-l}+\beta _2x_{n-k}}$." Mathematica Bohemica 135.3 (2010): 319-336. <http://eudml.org/doc/38133>.
@article{Zayed2010,
abstract = {The main objective of this paper is to study the boundedness character, the periodicity character, the convergence and the global stability of positive solutions of the difference equation \[ x\_\{n+1\}=\frac\{\alpha \_0x\_n+\alpha \_1x\_\{n-l\}+\alpha \_2x\_\{n-k\}\}\{\beta \_0x\_n+\beta \_1x\_\{n-l\}+\beta \_2x\_\{n-k\}\}, \quad n=0,1,2,\dots \]
where the coefficients $\alpha _i,\beta _i\in (0,\infty )$ for $ i=0,1,2,$ and $l$, $k$ are positive integers. The initial conditions $ x_\{-k\}, \dots , x_\{-l\}, \dots , x_\{-1\}, x_0 $ are arbitrary positive real numbers such that $l<k$. Some numerical experiments are presented.},
author = {Zayed, E. M. E., El-Moneam, M. A.},
journal = {Mathematica Bohemica},
keywords = {difference equation; boundedness; period two solution; convergence; global stability; rational difference equation; boundedness; period two solution; convergence; global stability; positive solutions; numerical experiments},
language = {eng},
number = {3},
pages = {319-336},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the rational recursive sequence $ x_\{n+1\}=\dfrac\{\alpha _0x_n+\alpha _1x_\{n-l\}+\alpha _2x_\{n-k\}\}\{\beta _0x_n+\beta _1x_\{n-l\}+\beta _2x_\{n-k\}\}$},
url = {http://eudml.org/doc/38133},
volume = {135},
year = {2010},
}
TY - JOUR
AU - Zayed, E. M. E.
AU - El-Moneam, M. A.
TI - On the rational recursive sequence $ x_{n+1}=\dfrac{\alpha _0x_n+\alpha _1x_{n-l}+\alpha _2x_{n-k}}{\beta _0x_n+\beta _1x_{n-l}+\beta _2x_{n-k}}$
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 3
SP - 319
EP - 336
AB - The main objective of this paper is to study the boundedness character, the periodicity character, the convergence and the global stability of positive solutions of the difference equation \[ x_{n+1}=\frac{\alpha _0x_n+\alpha _1x_{n-l}+\alpha _2x_{n-k}}{\beta _0x_n+\beta _1x_{n-l}+\beta _2x_{n-k}}, \quad n=0,1,2,\dots \]
where the coefficients $\alpha _i,\beta _i\in (0,\infty )$ for $ i=0,1,2,$ and $l$, $k$ are positive integers. The initial conditions $ x_{-k}, \dots , x_{-l}, \dots , x_{-1}, x_0 $ are arbitrary positive real numbers such that $l<k$. Some numerical experiments are presented.
LA - eng
KW - difference equation; boundedness; period two solution; convergence; global stability; rational difference equation; boundedness; period two solution; convergence; global stability; positive solutions; numerical experiments
UR - http://eudml.org/doc/38133
ER -
References
top- Aboutaleb, M. T., El-Sayed, M. A., Hamza, A. E., 10.1006/jmaa.2001.7481, J. Math. Anal. Appl. 261 (2001), 126-133. (2001) Zbl0990.39009MR1850961DOI10.1006/jmaa.2001.7481
- Agarwal, R., Difference Equations and Inequalities. Theory, Methods and Applications, Marcel Dekker New York (1992). (1992) Zbl0925.39001MR1155840
- Amleh, A. M., Grove, E. A., Ladas, G., Georgiou, D. A., On the recursive sequence , J. Math. Anal. Appl. 233 (1999), 790-798. (1999) Zbl0962.39004MR1689579
- Clark, C. W., 10.1007/BF00275067, J. Math. Biol. 3 (1976), 381-391. (1976) Zbl0337.92011MR0429174DOI10.1007/BF00275067
- Devault, R., Kosmala, W., Ladas, G., Schultz, S. W., Global behavior of , Nonlinear Analysis 47 (2001), 4743-4751. (2001) MR1975867
- Devault, R., Ladas, G., Schultz, S. W., 10.1090/S0002-9939-98-04626-7, Proc. Amer. Math. Soc. 126(11) (1998), 3257-3261. (1998) MR1473661DOI10.1090/S0002-9939-98-04626-7
- Devault, R., Schultz, S. W., On the dynamics of , Comm. Appl. Nonlinear Anal. 12 (2005), 35-39. (2005) MR2129054
- Elabbasy, E. M., El-Metwally, H., Elsayed, E. M., On the difference equation , Acta Mathematica Vietnamica 33 (2008), 85-94. (2008) MR2418690
- El-Metwally, H., Grove, E. A., Ladas, G., 10.1006/jmaa.2000.6747, J. Math. Anal. Appl. 245 (2000), 161-170. (2000) Zbl0971.39004MR1756582DOI10.1006/jmaa.2000.6747
- El-Metwally, H., Ladas, G., Grove, E. A., Voulov, H. D., 10.1080/10236190108808306, J. Differ. Equ. Appl. 7 (2001), 837-850. (2001) Zbl0993.39008MR1870725DOI10.1080/10236190108808306
- El-Morshedy, H. A., 10.1016/j.jmaa.2006.12.049, J. Math. Anal. Appl. 336 (2007), 262-276. (2007) Zbl1186.39022MR2348505DOI10.1016/j.jmaa.2006.12.049
- EL-Owaidy, H. M., Ahmed, A. M., Mousa, M. S., 10.1007/BF02936179, J. Appl. Math. Comput. 12 (2003), 31-37. (2003) MR1976801DOI10.1007/BF02936179
- EL-Owaidy, H. M., Ahmed, A. M., Elsady, Z., 10.1007/BF02936165, J. Appl. Math. Comput. 16 (2004), 243-249. (2004) MR2080567DOI10.1007/BF02936165
- Gibbons, C. H., Kulenovic, M. R. S., Ladas, G., On the recursive sequence , Math. Sci. Res. Hot-Line 4(2) (2000), 1-11. (2000) MR1742735
- Grove, E. A., Ladas, G., Periodicities in Nonlinear Difference Equations. Vol. 4, Chapman & Hall / CRC (2005). (2005) MR2193366
- Karakostas, G., Convergence of a difference equation via the full limiting sequences method, Differ. Equ. Dyn. Syst. 1 (1993), 289-294. (1993) Zbl0868.39002MR1259169
- Karakostas, G., Stević, S., On the recursive sequences , Comm. Appl. Nonlinear Anal. 11 (2004), 87-100. (2004) MR2069821
- Kocic, V. L., Ladas, G., Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers Dordrecht (1993). (1993) Zbl0787.39001MR1247956
- Kulenovic, M. R. S., Ladas, G., Dynamics of Second Order Rational Difference Equations with Open Problems and conjectures, Chapman & Hall / CRC (2001). (2001) MR1935074
- Kulenovic, M. R. S., Ladas, G., Sizer, W. S., On the recursive sequence , Math. Sci. Res. Hot-Line 2 (1998), 1-16. (1998) Zbl0960.39502MR1623643
- Kuruklis, S. A., The asymptotic stability of , J. Math. Anal. Appl. 188 (1994), 719-731. (1994) MR1305480
- Ladas, G., Gibbons, C. H., Kulenovic, M. R. S., Voulov, H. D., On the trichotomy character of , J. Difference Equ. Appl. 8 (2002), 75-92. (2002) Zbl1005.39017MR1884593
- Ladas, G., Gibbons, C. H., Kulenovic, M. R. S., On the dynamics of , Proceeding of the Fifth International Conference on Difference Equations and Applications, Temuco, Chile, Jan. 3-7, 2000 Taylor and Francis London (2002), 141-158. (2002) MR2016061
- Ladas, G., Camouzis, E., Voulov, H. D., On the dynamic of , J. Difference Equ. Appl. 9 (2003), 731-738. (2003) MR1992906
- Ladas, G., On the rational recursive sequence , J. Difference Equ. Appl. 1 (1995), 317-321. (1995) MR1350447
- Li, W. T., Sun, H. R., Global attractivity in a rational recursive sequence, Dyn. Syst. Appl. 11 (2002), 339-346. (2002) Zbl1019.39007MR1941754
- Stevi'c, S., 10.11650/twjm/1500558306, Taiwanese J. Math. 6 (2002), 405-414. (2002) MR1921603DOI10.11650/twjm/1500558306
- Stevi'c, S., On the recursive sequence , Appl. Math. Letter 15 (2002), 305-308. (2002) MR1891551
- Stevi'c, S., On the recursive sequence , Bull. Inst. Math. Acad. Sin. 32 (2004), 61-70. (2004) MR2037745
- Stevi'c, S., On the recursive sequences , J. Appl. Math. Comput. 18 (2005), 229-234. (2005) MR2137703
- Yang, X., Su, W., Chen, B., Megson, G. M., Evans, D. J., On the recursive sequence , J. Appl. Math. Comput. 162 (2005), 1485-1497. (2005) MR2113984
- Zayed, E. M. E., El-Moneam, M. A., On the rational recursive sequence , Comm. Appl. Nonlinear Anal. 12 (2005), 15-28. (2005) MR2163175
- Zayed, E. M. E., El-Moneam, M. A., 10.1007/BF02896475, J. Appl. Math. Comput. 22 (2006), 247-262. (2006) MR2248455DOI10.1007/BF02896475
- Zayed, E. M. E., El-Moneam, M. A., On the rational recursive sequence , Int. J. Math. Math. Sci. 2007 (2007), 12, Article ID23618. (2007) MR2295740
- Zayed, E. M. E., El-Moneam, M. A., On the rational recursive sequence , Comm. Appl. Nonlinear Anal. 15 (2008), 47-57. (2008) MR2414364
- Zayed, E. M. E., El-Moneam, M. A., On the rational recursive sequence , Math. Bohem. 133 (2008), 225-239. (2008) MR2494777
- Zayed, E. M. E., El-Moneam, M. A., On the rational recursive sequence , Comm. Appl. Nonlinear Anal. 16 (2009), 91-106. (2009) MR2554552
- Zayed, E. M. E., El-Moneam, M. A., 10.1007/s12190-008-0205-6, J. Appl. Math. Comput. 31 (2009), 229-237. (2009) MR2545724DOI10.1007/s12190-008-0205-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.