On the rational recursive sequence x n + 1 = α 0 x n + α 1 x n - l + α 2 x n - k β 0 x n + β 1 x n - l + β 2 x n - k

E. M. E. Zayed; M. A. El-Moneam

Mathematica Bohemica (2010)

  • Volume: 135, Issue: 3, page 319-336
  • ISSN: 0862-7959

Abstract

top
The main objective of this paper is to study the boundedness character, the periodicity character, the convergence and the global stability of positive solutions of the difference equation x n + 1 = α 0 x n + α 1 x n - l + α 2 x n - k β 0 x n + β 1 x n - l + β 2 x n - k , n = 0 , 1 , 2 , where the coefficients α i , β i ( 0 , ) for i = 0 , 1 , 2 , and l , k are positive integers. The initial conditions x - k , , x - l , , x - 1 , x 0 are arbitrary positive real numbers such that l < k . Some numerical experiments are presented.

How to cite

top

Zayed, E. M. E., and El-Moneam, M. A.. "On the rational recursive sequence $ x_{n+1}=\dfrac{\alpha _0x_n+\alpha _1x_{n-l}+\alpha _2x_{n-k}}{\beta _0x_n+\beta _1x_{n-l}+\beta _2x_{n-k}}$." Mathematica Bohemica 135.3 (2010): 319-336. <http://eudml.org/doc/38133>.

@article{Zayed2010,
abstract = {The main objective of this paper is to study the boundedness character, the periodicity character, the convergence and the global stability of positive solutions of the difference equation \[ x\_\{n+1\}=\frac\{\alpha \_0x\_n+\alpha \_1x\_\{n-l\}+\alpha \_2x\_\{n-k\}\}\{\beta \_0x\_n+\beta \_1x\_\{n-l\}+\beta \_2x\_\{n-k\}\}, \quad n=0,1,2,\dots \] where the coefficients $\alpha _i,\beta _i\in (0,\infty )$ for $ i=0,1,2,$ and $l$, $k$ are positive integers. The initial conditions $ x_\{-k\}, \dots , x_\{-l\}, \dots , x_\{-1\}, x_0 $ are arbitrary positive real numbers such that $l<k$. Some numerical experiments are presented.},
author = {Zayed, E. M. E., El-Moneam, M. A.},
journal = {Mathematica Bohemica},
keywords = {difference equation; boundedness; period two solution; convergence; global stability; rational difference equation; boundedness; period two solution; convergence; global stability; positive solutions; numerical experiments},
language = {eng},
number = {3},
pages = {319-336},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the rational recursive sequence $ x_\{n+1\}=\dfrac\{\alpha _0x_n+\alpha _1x_\{n-l\}+\alpha _2x_\{n-k\}\}\{\beta _0x_n+\beta _1x_\{n-l\}+\beta _2x_\{n-k\}\}$},
url = {http://eudml.org/doc/38133},
volume = {135},
year = {2010},
}

TY - JOUR
AU - Zayed, E. M. E.
AU - El-Moneam, M. A.
TI - On the rational recursive sequence $ x_{n+1}=\dfrac{\alpha _0x_n+\alpha _1x_{n-l}+\alpha _2x_{n-k}}{\beta _0x_n+\beta _1x_{n-l}+\beta _2x_{n-k}}$
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 3
SP - 319
EP - 336
AB - The main objective of this paper is to study the boundedness character, the periodicity character, the convergence and the global stability of positive solutions of the difference equation \[ x_{n+1}=\frac{\alpha _0x_n+\alpha _1x_{n-l}+\alpha _2x_{n-k}}{\beta _0x_n+\beta _1x_{n-l}+\beta _2x_{n-k}}, \quad n=0,1,2,\dots \] where the coefficients $\alpha _i,\beta _i\in (0,\infty )$ for $ i=0,1,2,$ and $l$, $k$ are positive integers. The initial conditions $ x_{-k}, \dots , x_{-l}, \dots , x_{-1}, x_0 $ are arbitrary positive real numbers such that $l<k$. Some numerical experiments are presented.
LA - eng
KW - difference equation; boundedness; period two solution; convergence; global stability; rational difference equation; boundedness; period two solution; convergence; global stability; positive solutions; numerical experiments
UR - http://eudml.org/doc/38133
ER -

References

top
  1. Aboutaleb, M. T., El-Sayed, M. A., Hamza, A. E., 10.1006/jmaa.2001.7481, J. Math. Anal. Appl. 261 (2001), 126-133. (2001) Zbl0990.39009MR1850961DOI10.1006/jmaa.2001.7481
  2. Agarwal, R., Difference Equations and Inequalities. Theory, Methods and Applications, Marcel Dekker New York (1992). (1992) Zbl0925.39001MR1155840
  3. Amleh, A. M., Grove, E. A., Ladas, G., Georgiou, D. A., On the recursive sequence x n + 1 = α + ( x n - 1 / x n ) , J. Math. Anal. Appl. 233 (1999), 790-798. (1999) Zbl0962.39004MR1689579
  4. Clark, C. W., 10.1007/BF00275067, J. Math. Biol. 3 (1976), 381-391. (1976) Zbl0337.92011MR0429174DOI10.1007/BF00275067
  5. Devault, R., Kosmala, W., Ladas, G., Schultz, S. W., Global behavior of y n + 1 = ( p + y n - k ) / ( q y n + y n - k ) , Nonlinear Analysis 47 (2001), 4743-4751. (2001) MR1975867
  6. Devault, R., Ladas, G., Schultz, S. W., 10.1090/S0002-9939-98-04626-7, Proc. Amer. Math. Soc. 126(11) (1998), 3257-3261. (1998) MR1473661DOI10.1090/S0002-9939-98-04626-7
  7. Devault, R., Schultz, S. W., On the dynamics of x n + 1 = ( β x n + γ x n - 1 ) / ( B x n + D x n - 2 ) , Comm. Appl. Nonlinear Anal. 12 (2005), 35-39. (2005) MR2129054
  8. Elabbasy, E. M., El-Metwally, H., Elsayed, E. M., On the difference equation x n + 1 = ( α x n - l + β x n - k ) / ( A x n - l + B x n - k ) , Acta Mathematica Vietnamica 33 (2008), 85-94. (2008) MR2418690
  9. El-Metwally, H., Grove, E. A., Ladas, G., 10.1006/jmaa.2000.6747, J. Math. Anal. Appl. 245 (2000), 161-170. (2000) Zbl0971.39004MR1756582DOI10.1006/jmaa.2000.6747
  10. El-Metwally, H., Ladas, G., Grove, E. A., Voulov, H. D., 10.1080/10236190108808306, J. Differ. Equ. Appl. 7 (2001), 837-850. (2001) Zbl0993.39008MR1870725DOI10.1080/10236190108808306
  11. El-Morshedy, H. A., 10.1016/j.jmaa.2006.12.049, J. Math. Anal. Appl. 336 (2007), 262-276. (2007) Zbl1186.39022MR2348505DOI10.1016/j.jmaa.2006.12.049
  12. EL-Owaidy, H. M., Ahmed, A. M., Mousa, M. S., 10.1007/BF02936179, J. Appl. Math. Comput. 12 (2003), 31-37. (2003) MR1976801DOI10.1007/BF02936179
  13. EL-Owaidy, H. M., Ahmed, A. M., Elsady, Z., 10.1007/BF02936165, J. Appl. Math. Comput. 16 (2004), 243-249. (2004) MR2080567DOI10.1007/BF02936165
  14. Gibbons, C. H., Kulenovic, M. R. S., Ladas, G., On the recursive sequence x n + 1 = ( α + β x n - 1 ) / ( γ + x n ) , Math. Sci. Res. Hot-Line 4(2) (2000), 1-11. (2000) MR1742735
  15. Grove, E. A., Ladas, G., Periodicities in Nonlinear Difference Equations. Vol. 4, Chapman & Hall / CRC (2005). (2005) MR2193366
  16. Karakostas, G., Convergence of a difference equation via the full limiting sequences method, Differ. Equ. Dyn. Syst. 1 (1993), 289-294. (1993) Zbl0868.39002MR1259169
  17. Karakostas, G., Stević, S., On the recursive sequences x n + 1 = A + f ( x n , , x n - k + 1 ) / x n - 1 , Comm. Appl. Nonlinear Anal. 11 (2004), 87-100. (2004) MR2069821
  18. Kocic, V. L., Ladas, G., Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers Dordrecht (1993). (1993) Zbl0787.39001MR1247956
  19. Kulenovic, M. R. S., Ladas, G., Dynamics of Second Order Rational Difference Equations with Open Problems and conjectures, Chapman & Hall / CRC (2001). (2001) MR1935074
  20. Kulenovic, M. R. S., Ladas, G., Sizer, W. S., On the recursive sequence x n + 1 = ( α x n + β x n - 1 ) / ( γ x n + δ x n - 1 ) , Math. Sci. Res. Hot-Line 2 (1998), 1-16. (1998) Zbl0960.39502MR1623643
  21. Kuruklis, S. A., The asymptotic stability of x n + 1 - a x n + b x n - k = 0 , J. Math. Anal. Appl. 188 (1994), 719-731. (1994) MR1305480
  22. Ladas, G., Gibbons, C. H., Kulenovic, M. R. S., Voulov, H. D., On the trichotomy character of x n + 1 = ( α + β x n + γ x n - 1 ) / ( A + x n ) , J. Difference Equ. Appl. 8 (2002), 75-92. (2002) Zbl1005.39017MR1884593
  23. Ladas, G., Gibbons, C. H., Kulenovic, M. R. S., On the dynamics of x n + 1 = ( α + β x n + γ x n - 1 ) / ( A + B x n ) , Proceeding of the Fifth International Conference on Difference Equations and Applications, Temuco, Chile, Jan. 3-7, 2000 Taylor and Francis London (2002), 141-158. (2002) MR2016061
  24. Ladas, G., Camouzis, E., Voulov, H. D., On the dynamic of x n + 1 = ( α + γ x n - 1 + δ x n - 2 ) / ( A + x n - 2 ) , J. Difference Equ. Appl. 9 (2003), 731-738. (2003) MR1992906
  25. Ladas, G., On the rational recursive sequence x n + 1 = ( α + β x n + γ x n - 1 ) / ( A + B x n + C x n - 1 ) , J. Difference Equ. Appl. 1 (1995), 317-321. (1995) MR1350447
  26. Li, W. T., Sun, H. R., Global attractivity in a rational recursive sequence, Dyn. Syst. Appl. 11 (2002), 339-346. (2002) Zbl1019.39007MR1941754
  27. Stevi'c, S., 10.11650/twjm/1500558306, Taiwanese J. Math. 6 (2002), 405-414. (2002) MR1921603DOI10.11650/twjm/1500558306
  28. Stevi'c, S., On the recursive sequence x n + 1 = g ( x n , x n - 1 ) / ( A + x n ) , Appl. Math. Letter 15 (2002), 305-308. (2002) MR1891551
  29. Stevi'c, S., On the recursive sequence x n + 1 = ( α + β x n ) / ( γ - x n - k ) , Bull. Inst. Math. Acad. Sin. 32 (2004), 61-70. (2004) MR2037745
  30. Stevi'c, S., On the recursive sequences x n + 1 = α + ( x n - 1 p / x n p ) , J. Appl. Math. Comput. 18 (2005), 229-234. (2005) MR2137703
  31. Yang, X., Su, W., Chen, B., Megson, G. M., Evans, D. J., On the recursive sequence x n + 1 = ( a x n - 1 + b x n - 2 ) / ( c + d x n - 1 x n - 2 ) , J. Appl. Math. Comput. 162 (2005), 1485-1497. (2005) MR2113984
  32. Zayed, E. M. E., El-Moneam, M. A., On the rational recursive sequence x n + 1 = ( D + α x n + β x n - 1 + γ x n - 2 ) / ( A x n + B x n - 1 + C x n - 2 ) , Comm. Appl. Nonlinear Anal. 12 (2005), 15-28. (2005) MR2163175
  33. Zayed, E. M. E., El-Moneam, M. A., 10.1007/BF02896475, J. Appl. Math. Comput. 22 (2006), 247-262. (2006) MR2248455DOI10.1007/BF02896475
  34. Zayed, E. M. E., El-Moneam, M. A., On the rational recursive sequence x n + 1 = A + i = 0 k α i x n - i / B + i = 0 k β i x n - i , Int. J. Math. Math. Sci. 2007 (2007), 12, Article ID23618. (2007) MR2295740
  35. Zayed, E. M. E., El-Moneam, M. A., On the rational recursive sequence x n + 1 = a x n - b x n / c x n - d x n - k , Comm. Appl. Nonlinear Anal. 15 (2008), 47-57. (2008) MR2414364
  36. Zayed, E. M. E., El-Moneam, M. A., On the rational recursive sequence x n + 1 = A + i = 0 k α i x n - i / i = 0 k β i x n - i , Math. Bohem. 133 (2008), 225-239. (2008) MR2494777
  37. Zayed, E. M. E., El-Moneam, M. A., On the rational recursive sequence x n + 1 = A x n + ( β x n + γ x n - k ) / ( C x n + D x n - k ) , Comm. Appl. Nonlinear Anal. 16 (2009), 91-106. (2009) MR2554552
  38. Zayed, E. M. E., El-Moneam, M. A., 10.1007/s12190-008-0205-6, J. Appl. Math. Comput. 31 (2009), 229-237. (2009) MR2545724DOI10.1007/s12190-008-0205-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.