On -starcompact spaces
Mathematica Bohemica (2008)
- Volume: 133, Issue: 3, page 259-266
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSong, Yan-Kui. "On $\mathcal {C}$-starcompact spaces." Mathematica Bohemica 133.3 (2008): 259-266. <http://eudml.org/doc/250528>.
@article{Song2008,
abstract = {A space $X$ is $\mathcal \{C\}$-starcompact if for every open cover $\mathcal \{U\}$ of $X,$ there exists a countably compact subset $C$ of $X$ such that $\mathop \{\rm St\}(C,\{\mathcal \{U\}\})=X.$ In this paper we investigate the relations between $\mathcal \{C\}$-starcompact spaces and other related spaces, and also study topological properties of $\mathcal \{C\}$-starcompact spaces.},
author = {Song, Yan-Kui},
journal = {Mathematica Bohemica},
keywords = {compact space; countably compact space; Lindelöf space; $\mathcal \{K\}$-starcompact space; $\mathcal \{C\}$-starcompact space; $\mathcal \{L\}$-starcompact space; compact space; countably compact space; Lindelöf space},
language = {eng},
number = {3},
pages = {259-266},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On $\mathcal \{C\}$-starcompact spaces},
url = {http://eudml.org/doc/250528},
volume = {133},
year = {2008},
}
TY - JOUR
AU - Song, Yan-Kui
TI - On $\mathcal {C}$-starcompact spaces
JO - Mathematica Bohemica
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 133
IS - 3
SP - 259
EP - 266
AB - A space $X$ is $\mathcal {C}$-starcompact if for every open cover $\mathcal {U}$ of $X,$ there exists a countably compact subset $C$ of $X$ such that $\mathop {\rm St}(C,{\mathcal {U}})=X.$ In this paper we investigate the relations between $\mathcal {C}$-starcompact spaces and other related spaces, and also study topological properties of $\mathcal {C}$-starcompact spaces.
LA - eng
KW - compact space; countably compact space; Lindelöf space; $\mathcal {K}$-starcompact space; $\mathcal {C}$-starcompact space; $\mathcal {L}$-starcompact space; compact space; countably compact space; Lindelöf space
UR - http://eudml.org/doc/250528
ER -
References
top- Douwen, E. K. van, Reed, G. M., Roscoe, A. W., Tree, I. J., 10.1016/0166-8641(91)90077-Y, Topology Appl. 39 (1991), 71-103. (1991) MR1103993DOI10.1016/0166-8641(91)90077-Y
- Engelking, R., General Topology, Rev. and compl. ed., Heldermann Verlag, Berlin (1989). (1989) Zbl0684.54001MR1039321
- Hiremath, G. R., On star with Lindelöf center property, J. Indian Math. Soc. New Ser. 59 (1993), 227-242. (1993) Zbl0887.54021MR1248966
- Fleischman, W. M., 10.4064/fm-67-1-1-9, Fund. Math. 67 (1970), 1-9. (1970) Zbl0194.54601MR0264608DOI10.4064/fm-67-1-1-9
- Ikenaga, S., Tani, T., On a topological concept between countable compactness and pseudocompactness, Research Reports of Numazu Technical College 26 (1990), 139-142. (1990)
- Ikenaga, S., A class which contains Lindelöf spaces, separable spaces and countably compact spaces, Memories of Numazu College of Technology 18 (1983), 105-108. (1983)
- Matveev, M. V., A survey on star-covering properties, Topological Atlas, preprint No. 330 (1998). (1998)
- Mrówka, S., 10.4064/fm-41-1-105-106, Fund. Math. 41 (1954), 105-106. (1954) MR0063650DOI10.4064/fm-41-1-105-106
- Song, Y-K., On -starcompact spaces, Bull. Malays. Math. Sci. Soc. 30 (2007), 59-64. (2007) Zbl1134.54314MR2330636
- Song, Y-K., 10.1007/s10587-006-0056-y, Czech. Math. J. 56 (2006), 781-788. (2006) Zbl1164.54356MR2291775DOI10.1007/s10587-006-0056-y
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.