Remarks on star covering properties in pseudocompact spaces
Mathematica Bohemica (2013)
- Volume: 138, Issue: 2, page 165-169
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSong, Yan-Kui. "Remarks on star covering properties in pseudocompact spaces." Mathematica Bohemica 138.2 (2013): 165-169. <http://eudml.org/doc/252530>.
@article{Song2013,
abstract = {Let $P$ be a topological property. A space $X$ is said to be star $P$ if whenever $\mathcal \{U\}$ is an open cover of $X$, there exists a subspace $A\subseteq X$ with property $P$ such that $X=\mathop \{\rm St\}(A,\mathcal \{U\})$, where $\mathop \{\rm St\}(A,\mathcal \{U\})=\bigcup \lbrace U\in \mathcal \{U\}\colon U\cap A\ne \emptyset \rbrace .$ In this paper, we study the relationships of star $P$ properties for $P\in \lbrace \textrm \{Lindelöf, compact, countably compact\}\rbrace $ in pseudocompact spaces by giving some examples.},
author = {Song, Yan-Kui},
journal = {Mathematica Bohemica},
keywords = {Lindelöf; star Lindelöf; compact; star compact; countably compact; star countably compact space; star covering property; start-Lindelöf; star compact; start countably compact},
language = {eng},
number = {2},
pages = {165-169},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Remarks on star covering properties in pseudocompact spaces},
url = {http://eudml.org/doc/252530},
volume = {138},
year = {2013},
}
TY - JOUR
AU - Song, Yan-Kui
TI - Remarks on star covering properties in pseudocompact spaces
JO - Mathematica Bohemica
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 138
IS - 2
SP - 165
EP - 169
AB - Let $P$ be a topological property. A space $X$ is said to be star $P$ if whenever $\mathcal {U}$ is an open cover of $X$, there exists a subspace $A\subseteq X$ with property $P$ such that $X=\mathop {\rm St}(A,\mathcal {U})$, where $\mathop {\rm St}(A,\mathcal {U})=\bigcup \lbrace U\in \mathcal {U}\colon U\cap A\ne \emptyset \rbrace .$ In this paper, we study the relationships of star $P$ properties for $P\in \lbrace \textrm {Lindelöf, compact, countably compact}\rbrace $ in pseudocompact spaces by giving some examples.
LA - eng
KW - Lindelöf; star Lindelöf; compact; star compact; countably compact; star countably compact space; star covering property; start-Lindelöf; star compact; start countably compact
UR - http://eudml.org/doc/252530
ER -
References
top- Alas, O. T., Junqueira, L. R., Wilson, R. G., 10.1016/j.topol.2010.12.012, Topology Appl. 158 (2011), 620-626. (2011) Zbl1226.54023MR2765618DOI10.1016/j.topol.2010.12.012
- Alas, O. T., Junqueira, L. R., Mill, J. van, Tkachuk, V. V., Wilson, R. G., 10.2478/s11533-011-0018-y, Cent. Eur. J. Math. 9 (2011), 603-615. (2011) MR2784032DOI10.2478/s11533-011-0018-y
- Douwen, E. K. van, Reed, G. M., Roscoe, A. W., Tree, I. J., 10.1016/0166-8641(91)90077-Y, Topology Appl. 39 (1991), 71-103. (1991) MR1103993DOI10.1016/0166-8641(91)90077-Y
- Engelking, R., General Topology, Heldermann, Berlin (1989). (1989) Zbl0684.54001MR1039321
- Hiremath, G. R., On star with Lindelöf center property, J. Indian Math. Soc., New Ser. 59 (1993), 227-242. (1993) Zbl0887.54021MR1248966
- Ikenaga, S., Tani, T., On a topological concept between countable compactness and pseudocompactness, Research Reports of Numazu Technical College 26 (1990), 139-142. (1990)
- Fleischman, W. M., 10.4064/fm-67-1-1-9, Fundam. Math. 67 (1970), 1-9. (1970) Zbl0194.54601MR0264608DOI10.4064/fm-67-1-1-9
- Matveev, M. V., A survey on star covering properties, Topology Atlas, preprint No. 330 (1998). (1998)
- Mrówka, S., 10.4064/fm-41-1-105-106, Fundam. Math. 41 (1954), 105-106. (1954) MR0063650DOI10.4064/fm-41-1-105-106
- Song, Y.-K., On -starcompact spaces, Math. Bohem. 133 (2008), 259-266. (2008) Zbl1199.54146MR2494780
- Song, Y.-K., On -starcompact spaces, Bull. Malays. Math. Sci. Soc. 30 (2007), 59-64. (2007) Zbl1134.54314MR2330636
- Song, Y.-K., 10.1007/s10587-006-0056-y, Czech. Math. J. 56 (2006), 781-788. (2006) Zbl1164.54356MR2291775DOI10.1007/s10587-006-0056-y
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.