On vector functions of bounded convexity

Libor Veselý; Luděk Zajíček

Mathematica Bohemica (2008)

  • Volume: 133, Issue: 3, page 321-335
  • ISSN: 0862-7959

Abstract

top
Let X be a normed linear space. We investigate properties of vector functions F : [ a , b ] X of bounded convexity. In particular, we prove that such functions coincide with the delta-convex mappings admitting a Lipschitz control function, and that convexity K a b F is equal to the variation of F + ' on [ a , b ) . As an application, we give a simple alternative proof of an unpublished result of the first author, containing an estimate of convexity of a composed mapping.

How to cite

top

Veselý, Libor, and Zajíček, Luděk. "On vector functions of bounded convexity." Mathematica Bohemica 133.3 (2008): 321-335. <http://eudml.org/doc/250530>.

@article{Veselý2008,
abstract = {Let $X$ be a normed linear space. We investigate properties of vector functions $F\colon [a,b] \rightarrow X$ of bounded convexity. In particular, we prove that such functions coincide with the delta-convex mappings admitting a Lipschitz control function, and that convexity $K_a^b F$ is equal to the variation of $F^\{\prime \}_+$ on $[a,b)$. As an application, we give a simple alternative proof of an unpublished result of the first author, containing an estimate of convexity of a composed mapping.},
author = {Veselý, Libor, Zajíček, Luděk},
journal = {Mathematica Bohemica},
keywords = {bounded convexity; delta-convex mapping; bounded variation; Banach space; bounded convexity; delta-convex mapping; bounded variation; Banach space},
language = {eng},
number = {3},
pages = {321-335},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On vector functions of bounded convexity},
url = {http://eudml.org/doc/250530},
volume = {133},
year = {2008},
}

TY - JOUR
AU - Veselý, Libor
AU - Zajíček, Luděk
TI - On vector functions of bounded convexity
JO - Mathematica Bohemica
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 133
IS - 3
SP - 321
EP - 335
AB - Let $X$ be a normed linear space. We investigate properties of vector functions $F\colon [a,b] \rightarrow X$ of bounded convexity. In particular, we prove that such functions coincide with the delta-convex mappings admitting a Lipschitz control function, and that convexity $K_a^b F$ is equal to the variation of $F^{\prime }_+$ on $[a,b)$. As an application, we give a simple alternative proof of an unpublished result of the first author, containing an estimate of convexity of a composed mapping.
LA - eng
KW - bounded convexity; delta-convex mapping; bounded variation; Banach space; bounded convexity; delta-convex mapping; bounded variation; Banach space
UR - http://eudml.org/doc/250530
ER -

References

top
  1. Bourbaki, N., Éléments de Mathématique IX, Livre IV: Fonctions d'une variable réelle (Théorie élémentaire), Second ed., Actualités Scientifiques et Industrielles, vol. 1074, Hermann, Paris (1958). (1958) 
  2. Chistyakov, V. V., 10.1007/BF02465896, J. Dynam. Control Systems 3 (1997), 261-289. (1997) Zbl0940.26009MR1449984DOI10.1007/BF02465896
  3. Diestel, J., Uhl, Jr., J. J., 10.1216/RMJ-1976-6-1-1, Rocky Mountain J. Math. 6 (1976), 1-46. (1976) Zbl0339.46031MR0399852DOI10.1216/RMJ-1976-6-1-1
  4. Duda, J., 10.1007/s10587-008-0003-1, Czech. Math. J. 58 (2008), 23-49. (2008) Zbl1167.46321MR2402524DOI10.1007/s10587-008-0003-1
  5. Duda, J., Absolutely continuous functions with values in metric spaces, Real Anal. Exchange 32 (2006-2007), 569-581. (2007) MR2369866
  6. Duda, J., Veselý, L., Zajíček, L., On d.c. functions and mappings, Atti Sem. Mat. Fis. Univ. Modena 51 (2003), 111-138. (2003) Zbl1072.46025MR1993883
  7. Duda, J., Zajíček, L., Curves in Banach spaces which allow a C 2 parametrization or a parametrization with finite convexity, Preprint (2006), electronically available at . 
  8. Federer, H., Geometric Measure Theory, Grundlehren der math. Wiss., vol. 153, Springer, New York (1969). (1969) Zbl0176.00801MR0257325
  9. Hartman, P., 10.2140/pjm.1959.9.707, Pacific J. Math. 9 (1959), 707-713. (1959) Zbl0093.06401MR0110773DOI10.2140/pjm.1959.9.707
  10. Kirchheim, B., 10.1090/S0002-9939-1994-1189747-7, Proc. Amer. Math. Soc. 121 (1994), 113-123. (1994) Zbl0806.28004MR1189747DOI10.1090/S0002-9939-1994-1189747-7
  11. Konyagin, S. V., Veselý, L., Delta-semidefinite and delta-convex quadratic forms in Banach spaces, Preprint, (2007). (2007) MR2398996
  12. Roberts, A. W., Varberg, E. D., 10.1090/S0002-9904-1969-12244-5, Bull. Amer. Math. Soc. 75 (1969), 568-572. (1969) Zbl0176.01204MR0239021DOI10.1090/S0002-9904-1969-12244-5
  13. Roberts, A. W., Varberg, E. D., Convex Functions, Pure and Applied Mathematics, vol. 57, Academic Press, New York-London (1973). (1973) Zbl0271.26009MR0442824
  14. Veselý, L., On the multiplicity points of monotone operators on separable Banach spaces, Comment. Math. Univ. Carolin. 27 (1986), 551-570. (1986) MR0873628
  15. Veselý, L., 10.2307/2046671, Proc. Amer. Math. Soc. 101 (1987), 685-686. (1987) MR0911033DOI10.2307/2046671
  16. Veselý, L., Topological properties of monotone operators, accretive operators and metric projections, CSc Dissertation (PhD Thesis), Charles University Prague (1990). (1990) 
  17. Veselý, L., Zajíček, L., Delta-convex mappings between Banach spaces and applications, Dissertationes Math. (Rozprawy Mat.) 289 (1989), 52 pp. (1989) MR1016045
  18. Veselý, L., Zajíček, L., 10.1017/S0013091505000040, Proc. Edinb. Math. Soc. 49 (2006), 739-751. (2006) Zbl1115.47048MR2266160DOI10.1017/S0013091505000040
  19. Veselý, L., Zajíček, L., On compositions of d.c. functions and mappings, (to appear) in J. Convex Anal. MR1614031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.