On vector functions of bounded convexity

Libor Veselý; Luděk Zajíček

Mathematica Bohemica (2008)

  • Volume: 133, Issue: 3, page 321-335
  • ISSN: 0862-7959

Abstract

top
Let X be a normed linear space. We investigate properties of vector functions F : [ a , b ] X of bounded convexity. In particular, we prove that such functions coincide with the delta-convex mappings admitting a Lipschitz control function, and that convexity K a b F is equal to the variation of F + ' on [ a , b ) . As an application, we give a simple alternative proof of an unpublished result of the first author, containing an estimate of convexity of a composed mapping.

How to cite

top

Veselý, Libor, and Zajíček, Luděk. "On vector functions of bounded convexity." Mathematica Bohemica 133.3 (2008): 321-335. <http://eudml.org/doc/250530>.

@article{Veselý2008,
abstract = {Let $X$ be a normed linear space. We investigate properties of vector functions $F\colon [a,b] \rightarrow X$ of bounded convexity. In particular, we prove that such functions coincide with the delta-convex mappings admitting a Lipschitz control function, and that convexity $K_a^b F$ is equal to the variation of $F^\{\prime \}_+$ on $[a,b)$. As an application, we give a simple alternative proof of an unpublished result of the first author, containing an estimate of convexity of a composed mapping.},
author = {Veselý, Libor, Zajíček, Luděk},
journal = {Mathematica Bohemica},
keywords = {bounded convexity; delta-convex mapping; bounded variation; Banach space; bounded convexity; delta-convex mapping; bounded variation; Banach space},
language = {eng},
number = {3},
pages = {321-335},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On vector functions of bounded convexity},
url = {http://eudml.org/doc/250530},
volume = {133},
year = {2008},
}

TY - JOUR
AU - Veselý, Libor
AU - Zajíček, Luděk
TI - On vector functions of bounded convexity
JO - Mathematica Bohemica
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 133
IS - 3
SP - 321
EP - 335
AB - Let $X$ be a normed linear space. We investigate properties of vector functions $F\colon [a,b] \rightarrow X$ of bounded convexity. In particular, we prove that such functions coincide with the delta-convex mappings admitting a Lipschitz control function, and that convexity $K_a^b F$ is equal to the variation of $F^{\prime }_+$ on $[a,b)$. As an application, we give a simple alternative proof of an unpublished result of the first author, containing an estimate of convexity of a composed mapping.
LA - eng
KW - bounded convexity; delta-convex mapping; bounded variation; Banach space; bounded convexity; delta-convex mapping; bounded variation; Banach space
UR - http://eudml.org/doc/250530
ER -

References

top
  1. Bourbaki, N., Éléments de Mathématique IX, Livre IV: Fonctions d'une variable réelle (Théorie élémentaire), Second ed., Actualités Scientifiques et Industrielles, vol. 1074, Hermann, Paris (1958). (1958) 
  2. Chistyakov, V. V., 10.1007/BF02465896, J. Dynam. Control Systems 3 (1997), 261-289. (1997) Zbl0940.26009MR1449984DOI10.1007/BF02465896
  3. Diestel, J., Uhl, Jr., J. J., 10.1216/RMJ-1976-6-1-1, Rocky Mountain J. Math. 6 (1976), 1-46. (1976) Zbl0339.46031MR0399852DOI10.1216/RMJ-1976-6-1-1
  4. Duda, J., 10.1007/s10587-008-0003-1, Czech. Math. J. 58 (2008), 23-49. (2008) Zbl1167.46321MR2402524DOI10.1007/s10587-008-0003-1
  5. Duda, J., Absolutely continuous functions with values in metric spaces, Real Anal. Exchange 32 (2006-2007), 569-581. (2007) MR2369866
  6. Duda, J., Veselý, L., Zajíček, L., On d.c. functions and mappings, Atti Sem. Mat. Fis. Univ. Modena 51 (2003), 111-138. (2003) Zbl1072.46025MR1993883
  7. Duda, J., Zajíček, L., Curves in Banach spaces which allow a C 2 parametrization or a parametrization with finite convexity, Preprint (2006), electronically available at . 
  8. Federer, H., Geometric Measure Theory, Grundlehren der math. Wiss., vol. 153, Springer, New York (1969). (1969) Zbl0176.00801MR0257325
  9. Hartman, P., 10.2140/pjm.1959.9.707, Pacific J. Math. 9 (1959), 707-713. (1959) Zbl0093.06401MR0110773DOI10.2140/pjm.1959.9.707
  10. Kirchheim, B., 10.1090/S0002-9939-1994-1189747-7, Proc. Amer. Math. Soc. 121 (1994), 113-123. (1994) Zbl0806.28004MR1189747DOI10.1090/S0002-9939-1994-1189747-7
  11. Konyagin, S. V., Veselý, L., Delta-semidefinite and delta-convex quadratic forms in Banach spaces, Preprint, (2007). (2007) MR2398996
  12. Roberts, A. W., Varberg, E. D., 10.1090/S0002-9904-1969-12244-5, Bull. Amer. Math. Soc. 75 (1969), 568-572. (1969) Zbl0176.01204MR0239021DOI10.1090/S0002-9904-1969-12244-5
  13. Roberts, A. W., Varberg, E. D., Convex Functions, Pure and Applied Mathematics, vol. 57, Academic Press, New York-London (1973). (1973) Zbl0271.26009MR0442824
  14. Veselý, L., On the multiplicity points of monotone operators on separable Banach spaces, Comment. Math. Univ. Carolin. 27 (1986), 551-570. (1986) MR0873628
  15. Veselý, L., 10.2307/2046671, Proc. Amer. Math. Soc. 101 (1987), 685-686. (1987) MR0911033DOI10.2307/2046671
  16. Veselý, L., Topological properties of monotone operators, accretive operators and metric projections, CSc Dissertation (PhD Thesis), Charles University Prague (1990). (1990) 
  17. Veselý, L., Zajíček, L., Delta-convex mappings between Banach spaces and applications, Dissertationes Math. (Rozprawy Mat.) 289 (1989), 52 pp. (1989) MR1016045
  18. Veselý, L., Zajíček, L., 10.1017/S0013091505000040, Proc. Edinb. Math. Soc. 49 (2006), 739-751. (2006) Zbl1115.47048MR2266160DOI10.1017/S0013091505000040
  19. Veselý, L., Zajíček, L., On compositions of d.c. functions and mappings, (to appear) in J. Convex Anal. MR1614031

NotesEmbed ?

top

You must be logged in to post comments.