Curves in Banach spaces which allow a parametrization or a parametrization with finite convexity
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 4, page 1057-1085
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDuda, Jakub, and Zajíček, Luděk. "Curves in Banach spaces which allow a $C^{1,\rm BV}$ parametrization or a parametrization with finite convexity." Czechoslovak Mathematical Journal 63.4 (2013): 1057-1085. <http://eudml.org/doc/260775>.
@article{Duda2013,
abstract = {We give a complete characterization of those $f\colon [0,1] \rightarrow X$ (where $X$ is a Banach space) which allow an equivalent $C^\{1,\rm BV\}$ parametrization (i.e., a $C^1$ parametrization whose derivative has bounded variation) or a parametrization with bounded convexity. Our results are new also for $X= \mathbb \{R\}^n$. We present examples which show applicability of our characterizations. For example, we show that the $C^\{1,\rm BV\}$ and $C^2$ parametrization problems are equivalent for $X=\mathbb \{R\}$ but are not equivalent for $X = \mathbb \{R\}^2$.},
author = {Duda, Jakub, Zajíček, Luděk},
journal = {Czechoslovak Mathematical Journal},
keywords = {curve in Banach spaces; $C^\{1,\rm BV\}$ parametrization; parametrization with bounded convexity; curves in Banach spaces; parametrization; parametrization with bounded convexity},
language = {eng},
number = {4},
pages = {1057-1085},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Curves in Banach spaces which allow a $C^\{1,\rm BV\}$ parametrization or a parametrization with finite convexity},
url = {http://eudml.org/doc/260775},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Duda, Jakub
AU - Zajíček, Luděk
TI - Curves in Banach spaces which allow a $C^{1,\rm BV}$ parametrization or a parametrization with finite convexity
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 1057
EP - 1085
AB - We give a complete characterization of those $f\colon [0,1] \rightarrow X$ (where $X$ is a Banach space) which allow an equivalent $C^{1,\rm BV}$ parametrization (i.e., a $C^1$ parametrization whose derivative has bounded variation) or a parametrization with bounded convexity. Our results are new also for $X= \mathbb {R}^n$. We present examples which show applicability of our characterizations. For example, we show that the $C^{1,\rm BV}$ and $C^2$ parametrization problems are equivalent for $X=\mathbb {R}$ but are not equivalent for $X = \mathbb {R}^2$.
LA - eng
KW - curve in Banach spaces; $C^{1,\rm BV}$ parametrization; parametrization with bounded convexity; curves in Banach spaces; parametrization; parametrization with bounded convexity
UR - http://eudml.org/doc/260775
ER -
References
top- Alexandrov, A. D., Reshetnyak, Yu. G., General Theory of Irregular Curves. Transl. from the Russian by L. Ya. Yuzina, Mathematics and Its Applications: Soviet Series 29 Kluwer Academic Publishers, Dordrecht (1989). (1989) Zbl0691.53002MR1117220
- Bourbaki, N., Éléments de Mathématique. I: Les structures fondamentales de l'analyse. Livre IV: Fonctions d'une variable réelle (théorie élémentaire). Chapitres 1, 2 et 3: Dérievées. Primitives et intégrales. Fonctions élémentaires. Second ed, French Actualés Sci. Indust. 1074 Hermann, Paris (1958). (1958)
- Chistyakov, V. V., 10.1007/BF02465896, J. Dyn. Control Sys. 3 (1997), 261-289. (1997) Zbl0940.26009MR1449984DOI10.1007/BF02465896
- Duda, J., 10.1007/s10587-008-0003-1, Czech. Math. J. 58 (2008), 23-49. (2008) Zbl1167.46321MR2402524DOI10.1007/s10587-008-0003-1
- Duda, J., 10.1016/j.jmaa.2007.05.046, J. Math. Anal. Appl. 338 (2008), 628-638. (2008) Zbl1135.46021MR2386444DOI10.1016/j.jmaa.2007.05.046
- Duda, J., 10.4064/fm205-3-1, Fundam. Math. 205 (2009), 191-217. (2009) Zbl1191.26003MR2557935DOI10.4064/fm205-3-1
- Duda, J., Zajíček, L., 10.1216/rmjm/1194275931, Rocky Mt. J. Math. 37 (2007), 1493-1525. (2007) MR2382898DOI10.1216/rmjm/1194275931
- Duda, J., Zajíek, L., 10.1112/jlms/jdq100, J. London Math. Soc., II. Ser. 83 (2011), 733-754. (2011) MR2802508DOI10.1112/jlms/jdq100
- Duda, J., Zajíek, L., 10.1007/s10474-010-9094-x, Acta Math. Hung. 127 (2010), 85-111. (2010) MR2629670DOI10.1007/s10474-010-9094-x
- Duda, J., Zajíček, L., 10.1112/jlms/jdq100, J. Lond. Math. Soc., II. Ser. 83 (2011), 733-754. (2011) MR2802508DOI10.1112/jlms/jdq100
- Federer, H., Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 153. Springer, New York (1969). (1969) Zbl0176.00801MR0257325
- Kirchheim, B., 10.1090/S0002-9939-1994-1189747-7, Proc. Am. Math. Soc. 121 (1994), 113-123. (1994) Zbl0806.28004MR1189747DOI10.1090/S0002-9939-1994-1189747-7
- Kühnel, W., Differential Geometry. Curves-Surfaces-Manifolds. Transl. from the German by Bruce Hunt, Student Mathematical Library 16. AMS Providence, RI (2002). (2002) Zbl1009.53002MR1882174
- Laczkovich, M., Preiss, D., 10.1512/iumj.1985.34.34024, Indiana Univ. Math. J. 34 (1985), 405-424. (1985) Zbl0634.26006MR0783923DOI10.1512/iumj.1985.34.34024
- Lebedev, V. V., 10.1007/BF01142475, Math. Notes 40 (1986), 713-719 translation from Mat. Zametki 40 (1986), 364-373 Russian. (1986) Zbl0637.26006MR0869927DOI10.1007/BF01142475
- Massera, J. L., Schäffer, J. J., 10.2307/1969871, Ann. Math. (2) 67 (1958), 517-573. (1958) Zbl0178.17701MR0096985DOI10.2307/1969871
- Pogorelov, A. V., 10.1090/mmono/035, Translations of Mathematical Monographs 35 AMS, Providence, RI (1973). (1973) Zbl0311.53067MR0346714DOI10.1090/mmono/035
- Roberts, A. W., Varberg, D. E., Convex Functions, Pure and Applied Mathematics 57 Academic Press, a subsidiary of Harcourt Brace Jovanovich, New York (1973). (1973) Zbl0271.26009MR0442824
- Veselý, L., On the multiplicity points of monotone operators on separable Banach spaces, Commentat. Math. Univ. Carol. 27 (1986), 551-570. (1986) MR0873628
- Veselý, L., Zajíek, L., Delta-convex mappings between Banach spaces and applications, Dissertationes Math. (Rozprawy Mat.) 289 1-48 (1989). (1989) MR1016045
- Veselý, L., Zajíek, L., On vector functions of bounded convexity, Math. Bohem. 133 (2008), 321-335. (2008) MR2494785
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.