On the rational recursive sequence
E. M. E. Zayed; M. A. El-Moneam
Mathematica Bohemica (2008)
- Volume: 133, Issue: 3, page 225-239
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topZayed, E. M. E., and El-Moneam, M. A.. "On the rational recursive sequence $ \ x_{n+1}=\Big ( A+\sum _{i=0}^k\alpha _ix_{n-i}\Big ) \Big / \sum _{i=0}^k\beta _ix_{n-i} $." Mathematica Bohemica 133.3 (2008): 225-239. <http://eudml.org/doc/250538>.
@article{Zayed2008,
abstract = {The main objective of this paper is to study the boundedness character, the periodic character, the convergence and the global stability of positive solutions of the difference equation \[ x\_\{n+1\}=\bigg ( A+\sum \_\{i=0\}^k\alpha \_ix\_\{n-i\}\bigg ) \Big / \sum \_\{i=0\}^k\beta \_ix\_\{n-i\},\ \ n=0,1,2,\dots \]
where the coefficients $A$, $\alpha _i$, $\beta _i$ and the initial conditions $x_\{-k\},x_\{-k+1\},\dots ,x_\{-1\},x_0$ are positive real numbers, while $k$ is a positive integer number.},
author = {Zayed, E. M. E., El-Moneam, M. A.},
journal = {Mathematica Bohemica},
keywords = {difference equations; boundedness character; period two solution; convergence; global stability; boundedness character; period two solution; convergence; global stability; rational difference equation; positive solutions},
language = {eng},
number = {3},
pages = {225-239},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the rational recursive sequence $ \ x_\{n+1\}=\Big ( A+\sum _\{i=0\}^k\alpha _ix_\{n-i\}\Big ) \Big / \sum _\{i=0\}^k\beta _ix_\{n-i\} $},
url = {http://eudml.org/doc/250538},
volume = {133},
year = {2008},
}
TY - JOUR
AU - Zayed, E. M. E.
AU - El-Moneam, M. A.
TI - On the rational recursive sequence $ \ x_{n+1}=\Big ( A+\sum _{i=0}^k\alpha _ix_{n-i}\Big ) \Big / \sum _{i=0}^k\beta _ix_{n-i} $
JO - Mathematica Bohemica
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 133
IS - 3
SP - 225
EP - 239
AB - The main objective of this paper is to study the boundedness character, the periodic character, the convergence and the global stability of positive solutions of the difference equation \[ x_{n+1}=\bigg ( A+\sum _{i=0}^k\alpha _ix_{n-i}\bigg ) \Big / \sum _{i=0}^k\beta _ix_{n-i},\ \ n=0,1,2,\dots \]
where the coefficients $A$, $\alpha _i$, $\beta _i$ and the initial conditions $x_{-k},x_{-k+1},\dots ,x_{-1},x_0$ are positive real numbers, while $k$ is a positive integer number.
LA - eng
KW - difference equations; boundedness character; period two solution; convergence; global stability; boundedness character; period two solution; convergence; global stability; rational difference equation; positive solutions
UR - http://eudml.org/doc/250538
ER -
References
top- Aboutaleb, M. T., El-Sayed, M. A., Hamza, A. E., Stability of the recursive sequence , J. Math. Anal. Appl. 261 (2001), 126-133. (2001) Zbl0990.39009MR1850961
- Agarwal, R., Difference Equations and Inequalities, Theory, Methods and Applications, Marcel Dekker, New York (1992). (1992) Zbl0925.39001MR1155840
- Amleh, A. M., Grove, E. A., Ladas, G., Georgiou, D. A., On the recursive sequence , J. Math. Anal. Appl. 233 (1999), 790-798. (1999) MR1689579
- Vault, R. De, Kosmala, W., Ladas, G., Schultz, S. W., Global behavior of , Nonlinear Analysis 47 (2001), 4743-4751. (2001) MR1975867
- Vault, R. De, Ladas, G., Schultz, S. W., 10.1090/S0002-9939-98-04626-7, Proc. Amer. Math. Soc. 126 (1998), 3257-3261. (1998) MR1473661DOI10.1090/S0002-9939-98-04626-7
- Vault, R. De, Schultz, S. W., On the dynamics of , Comm. Appl. Nonlinear Analysis 12 (2005), 35-39. (2005) MR2129054
- El-Metwally, H., Grove, E. A., Ladas, G., 10.1006/jmaa.2000.6747, J. Math. Anal. Appl. 245 (2000), 161-170. (2000) Zbl0971.39004MR1756582DOI10.1006/jmaa.2000.6747
- El-Metwally, H., Ladas, G., Grove, E. A., Voulov, H. D., 10.1080/10236190108808306, J. Difference Equ. Appl. 7 (2001), 837-850. (2001) Zbl0993.39008MR1870725DOI10.1080/10236190108808306
- EL-Owaidy, H. M., Ahmed, A. M., Mousa, M. S., 10.1007/BF02936179, J. Appl. Math. & Comput. 12 (2003), 31-37. (2003) MR1976801DOI10.1007/BF02936179
- EL-Owaidy, H. M., Ahmed, A. M., Elsady, Z., 10.1007/BF02936165, J. Appl. Math. & Comput. 16 (2004), 243-249. (2004) MR2080567DOI10.1007/BF02936165
- Karakostas, G., Convergence of a difference equation via the full limiting sequences method, Diff. Equations and Dynamical. System 1 (1993), 289-294. (1993) Zbl0868.39002MR1259169
- Karakostas, G., Stević, S., On the recursive sequences , Commun. Appl. Nonlin. Anal. 11 (2004), 87-99. (2004) MR2069821
- Kocic, V. L., Ladas, G., Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht (1993). (1993) Zbl0787.39001MR1247956
- Kulenovic, M. R. S., Ladas, G., Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman & Hall/CRC Press (2002). (2002) Zbl0981.39011MR1935074
- Kulenovic, M. R. S., Ladas, G., Sizer, W. S., On the recursive sequence , Math. Sci. Res. Hot-Line 2 (1998), 1-16. (1998) Zbl0960.39502MR1623643
- Kuruklis, S. A., The asymptotic stability of , J. Math. Anal. Appl. 188 (1994), 719-731. (1994) MR1305480
- Ladas, G., Gibbons, C. H., Kulenovic, M. R. S., Voulov, H. D., On the trichotomy character of , J. Difference Equations and Appl. 8 (2002), 75-92. (2002) Zbl1005.39017MR1884593
- Ladas, G., Gibbons, C. H., Kulenovic, M. R. S., On the dynamics of , Proceeding of the Fifth International Conference on Difference Equations and Applications, Temuco, Chile, Jan. 3-7, 2000, Taylor and Francis, London (2002), 141-158. (2002) MR2016061
- Ladas, G., Camouzis, E., Voulov, H. D., On the dynamic of , J. Difference Equ. Appl. 9 (2003), 731-738. (2003) MR1992906
- Ladas, G., On the recursive sequence , J. Difference Equ. Appl. 1 (1995), 317-321. (1995) MR1350447
- Li, W. T., Sun, H. R., Global attractivity in a rational recursive sequence, Dyn. Syst. Appl. 11 (2002), 339-346. (2002) Zbl1019.39007MR1941754
- Lin, Yi-Zhong, Common domain of asymptotic stability of a family of difference equations, Appl. Math. E-Notes 1 (2001), 31-33. (2001) MR1833834
- Stevi'c, S., 10.11650/twjm/1500558306, Taiwanese J. Math. 6 (2002), 405-414. (2002) MR1921603DOI10.11650/twjm/1500558306
- Stevi'c, S., On the recursive sequences , Appl. Math. Letter 15 (2002), 305-308. (2002) MR1891551
- Stevi'c, S., 10.1007/BF02936567, J. Appl. Math. Comput. 18 (2005), 229-234. (2005) MR2137703DOI10.1007/BF02936567
- Zayed, E. M. E., El-Moneam, M. A., On the rational recursive sequence , Commun. Appl. Nonlin. Anal. 12 (2005), 15-28. (2005) MR2163175
- Zayed, E. M. E., El-Moneam, M. A., 10.1007/BF02896475, J. Appl. Math. Comput. 22 (2006), 247-262. (2006) MR2248455DOI10.1007/BF02896475
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.