Quenching time of some nonlinear wave equations
Firmin K. N’gohisse; Théodore K. Boni
Archivum Mathematicum (2009)
- Volume: 045, Issue: 2, page 115-124
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topN’gohisse, Firmin K., and Boni, Théodore K.. "Quenching time of some nonlinear wave equations." Archivum Mathematicum 045.2 (2009): 115-124. <http://eudml.org/doc/250555>.
@article{N2009,
abstract = {In this paper, we consider the following initial-boundary value problem
\[ \{\left\rbrace \begin\{array\}\{ll\} u\_\{tt\}(x,t)=\varepsilon Lu(x,t)+f\big (u(x,t)\big )\quad \mbox\{in\}\quad \Omega \times (0,T)\,,\\ u(x,t)=0 \quad \mbox\{on\}\quad \partial \Omega \times (0,T)\,, \\ u(x,0)=0 \quad \mbox\{in\}\quad \Omega \,, \\ u\_t(x,0)=0 \quad \mbox\{in\}\quad \Omega \,, \end\{array\}\right.\}\]
where $\Omega $ is a bounded domain in $\mathbb \{R\}^N$ with smooth boundary $\partial \Omega $, $L$ is an elliptic operator, $\varepsilon $ is a positive parameter, $f(s)$ is a positive, increasing, convex function for $s\in (-\infty ,b)$, $\lim _\{s\rightarrow b\}f(s)=\infty $ and $\int _0^b\frac\{ds\}\{f(s)\}<\infty $ with $b=\operatorname\{const\}>0$. Under some assumptions, we show that the solution of the above problem quenches in a finite time and its quenching time goes to that of the solution of the following differential equation
\[ \{\left\rbrace \begin\{array\}\{ll\} \alpha ^\{\prime \prime \}(t)=f(\alpha (t))\,,&\quad t>0\,, \\ \alpha (0)=0\,,\quad \alpha ^\{\prime \}(0)=0\,, \end\{array\}\right.\}\]
as $\varepsilon $ goes to zero. We also show that the above result remains valid if the domain $\Omega $ is large enough and its size is taken as parameter. Finally, we give some numerical results to illustrate our analysis.},
author = {N’gohisse, Firmin K., Boni, Théodore K.},
journal = {Archivum Mathematicum},
keywords = {nonlinear wave equations; quenching; convergence; numerical quenching time; nonlinear wave equation; quenching; convergence; numerical quenching time},
language = {eng},
number = {2},
pages = {115-124},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Quenching time of some nonlinear wave equations},
url = {http://eudml.org/doc/250555},
volume = {045},
year = {2009},
}
TY - JOUR
AU - N’gohisse, Firmin K.
AU - Boni, Théodore K.
TI - Quenching time of some nonlinear wave equations
JO - Archivum Mathematicum
PY - 2009
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 045
IS - 2
SP - 115
EP - 124
AB - In this paper, we consider the following initial-boundary value problem
\[ {\left\rbrace \begin{array}{ll} u_{tt}(x,t)=\varepsilon Lu(x,t)+f\big (u(x,t)\big )\quad \mbox{in}\quad \Omega \times (0,T)\,,\\ u(x,t)=0 \quad \mbox{on}\quad \partial \Omega \times (0,T)\,, \\ u(x,0)=0 \quad \mbox{in}\quad \Omega \,, \\ u_t(x,0)=0 \quad \mbox{in}\quad \Omega \,, \end{array}\right.}\]
where $\Omega $ is a bounded domain in $\mathbb {R}^N$ with smooth boundary $\partial \Omega $, $L$ is an elliptic operator, $\varepsilon $ is a positive parameter, $f(s)$ is a positive, increasing, convex function for $s\in (-\infty ,b)$, $\lim _{s\rightarrow b}f(s)=\infty $ and $\int _0^b\frac{ds}{f(s)}<\infty $ with $b=\operatorname{const}>0$. Under some assumptions, we show that the solution of the above problem quenches in a finite time and its quenching time goes to that of the solution of the following differential equation
\[ {\left\rbrace \begin{array}{ll} \alpha ^{\prime \prime }(t)=f(\alpha (t))\,,&\quad t>0\,, \\ \alpha (0)=0\,,\quad \alpha ^{\prime }(0)=0\,, \end{array}\right.}\]
as $\varepsilon $ goes to zero. We also show that the above result remains valid if the domain $\Omega $ is large enough and its size is taken as parameter. Finally, we give some numerical results to illustrate our analysis.
LA - eng
KW - nonlinear wave equations; quenching; convergence; numerical quenching time; nonlinear wave equation; quenching; convergence; numerical quenching time
UR - http://eudml.org/doc/250555
ER -
References
top- Abia, L. M., López-Marcos, J. C., Martínez, J., 10.1016/S0168-9274(97)00105-0, Appl. Numer. Math. 26 (1998), 399–414. (1998) MR1612360DOI10.1016/S0168-9274(97)00105-0
- Boni, T. K., On quenching of solution for some semilinear parabolic equation of second order, Bull. Belg. Math. Soc. 5 (2000), 73–95. (2000) MR1741748
- Boni, T. K., 10.1016/S0764-4442(01)02078-X, C. R. Acad. Sci. Paris Sér. I Math. 333 (8) (2001), 795–800. (2001) Zbl0999.35004MR1868956DOI10.1016/S0764-4442(01)02078-X
- Chang, H., Levine, H. A., 10.1137/0512075, SIAM J. Math. Anal. 12 (1982), 893–903. (1982) MR0635242DOI10.1137/0512075
- Friedman, A., Lacey, A. A., 10.1137/0518054, SIAM J. Math. Anal. 18 (1987), 711–721. (1987) Zbl0643.35013MR0883563DOI10.1137/0518054
- Glassey, R. T., 10.1007/BF01213863, Math. Z. 132 (1973), 183–203. (1973) Zbl0247.35083MR0340799DOI10.1007/BF01213863
- Kaplan, S., 10.1002/cpa.3160160307, Comm. Pure Appl. Math. 16 (1963), 305–330. (1963) Zbl0156.33503MR0160044DOI10.1002/cpa.3160160307
- Keller, J. B., 10.1002/cpa.3160100404, Comm. Pure Appl. Math. 10 (1957), 523–530. (1957) Zbl0090.31802MR0096889DOI10.1002/cpa.3160100404
- Levine, H. A., Instability and nonexistence of global solutions to nonlinear wave equations of the form , Trans. Amer. Math. Soc. 192 (1974), 1–21. (1974) MR0344697
- Levine, H. A., 10.1137/0505015, SIAM J. Math. Anal. 5 (1974), 138–146. (1974) Zbl0243.35069MR0399682DOI10.1137/0505015
- Levine, H. A., 10.1137/0514088, SIAM J. Math. Anal. 14 (1983), 1139–1153. (1983) MR0718814DOI10.1137/0514088
- Levine, H. A., The phenomenon of quenching: A survey , Proc. VIth International Conference on Trends in the Theory and Practice of Nonlinear Analysis (Lakshmitanthan, V., ed.), Elservier Nork-Holland, New York, 1985. (1985) Zbl0581.35037MR0817500
- Levine, H. A., Smiley, M. W., The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions, J. Math. Anal. Appl. 103 (1984), 409–427. (1984) MR0718814
- Protter, M. H., Weinberger, H. F., Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs, NJ, 1967. (1967) MR0219861
- Rammaha, M. A., On the quenching of solutions of the wave equation with a nonlinear boundary condition, J. Reine Angew. Math. 407 (1990), 1–18. (1990) Zbl0698.35088MR1048525
- Reed, M., Abstract nonlinear wave equations, Lecture Notes in Math., vol. 507, Springer-Verlag Berlin, New-York, 1976. (1976) Zbl0319.35060MR0605679
- Sattinger, D. H., 10.1007/BF00250942, Arch. Rational Mech. Anal. 30 (1968), 148–172. (1968) Zbl0159.39102MR0227616DOI10.1007/BF00250942
- Smith, R. A., 10.1137/0520072, SIAM J. Math. Anal. 20 (1989), 1081–1094. (1989) Zbl0687.35056MR1009347DOI10.1137/0520072
- Walter, W., Differential-und Integral-Ungleichungen, Springer, Berlin, 1954. (1954)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.