Quenching time of some nonlinear wave equations

Firmin K. N’gohisse; Théodore K. Boni

Archivum Mathematicum (2009)

  • Volume: 045, Issue: 2, page 115-124
  • ISSN: 0044-8753

Abstract

top
In this paper, we consider the following initial-boundary value problem u t t ( x , t ) = ε L u ( x , t ) + f ( u ( x , t ) ) in Ω × ( 0 , T ) , u ( x , t ) = 0 on Ω × ( 0 , T ) , u ( x , 0 ) = 0 in Ω , u t ( x , 0 ) = 0 in Ω , where Ω is a bounded domain in N with smooth boundary Ω , L is an elliptic operator, ε is a positive parameter, f ( s ) is a positive, increasing, convex function for s ( - , b ) , lim s b f ( s ) = and 0 b d s f ( s ) < with b = const > 0 . Under some assumptions, we show that the solution of the above problem quenches in a finite time and its quenching time goes to that of the solution of the following differential equation α ' ' ( t ) = f ( α ( t ) ) , t > 0 , α ( 0 ) = 0 , α ' ( 0 ) = 0 , as ε goes to zero. We also show that the above result remains valid if the domain Ω is large enough and its size is taken as parameter. Finally, we give some numerical results to illustrate our analysis.

How to cite

top

N’gohisse, Firmin K., and Boni, Théodore K.. "Quenching time of some nonlinear wave equations." Archivum Mathematicum 045.2 (2009): 115-124. <http://eudml.org/doc/250555>.

@article{N2009,
abstract = {In this paper, we consider the following initial-boundary value problem \[ \{\left\rbrace \begin\{array\}\{ll\} u\_\{tt\}(x,t)=\varepsilon Lu(x,t)+f\big (u(x,t)\big )\quad \mbox\{in\}\quad \Omega \times (0,T)\,,\\ u(x,t)=0 \quad \mbox\{on\}\quad \partial \Omega \times (0,T)\,, \\ u(x,0)=0 \quad \mbox\{in\}\quad \Omega \,, \\ u\_t(x,0)=0 \quad \mbox\{in\}\quad \Omega \,, \end\{array\}\right.\}\] where $\Omega $ is a bounded domain in $\mathbb \{R\}^N$ with smooth boundary $\partial \Omega $, $L$ is an elliptic operator, $\varepsilon $ is a positive parameter, $f(s)$ is a positive, increasing, convex function for $s\in (-\infty ,b)$, $\lim _\{s\rightarrow b\}f(s)=\infty $ and $\int _0^b\frac\{ds\}\{f(s)\}<\infty $ with $b=\operatorname\{const\}>0$. Under some assumptions, we show that the solution of the above problem quenches in a finite time and its quenching time goes to that of the solution of the following differential equation \[ \{\left\rbrace \begin\{array\}\{ll\} \alpha ^\{\prime \prime \}(t)=f(\alpha (t))\,,&\quad t>0\,, \\ \alpha (0)=0\,,\quad \alpha ^\{\prime \}(0)=0\,, \end\{array\}\right.\}\] as $\varepsilon $ goes to zero. We also show that the above result remains valid if the domain $\Omega $ is large enough and its size is taken as parameter. Finally, we give some numerical results to illustrate our analysis.},
author = {N’gohisse, Firmin K., Boni, Théodore K.},
journal = {Archivum Mathematicum},
keywords = {nonlinear wave equations; quenching; convergence; numerical quenching time; nonlinear wave equation; quenching; convergence; numerical quenching time},
language = {eng},
number = {2},
pages = {115-124},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Quenching time of some nonlinear wave equations},
url = {http://eudml.org/doc/250555},
volume = {045},
year = {2009},
}

TY - JOUR
AU - N’gohisse, Firmin K.
AU - Boni, Théodore K.
TI - Quenching time of some nonlinear wave equations
JO - Archivum Mathematicum
PY - 2009
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 045
IS - 2
SP - 115
EP - 124
AB - In this paper, we consider the following initial-boundary value problem \[ {\left\rbrace \begin{array}{ll} u_{tt}(x,t)=\varepsilon Lu(x,t)+f\big (u(x,t)\big )\quad \mbox{in}\quad \Omega \times (0,T)\,,\\ u(x,t)=0 \quad \mbox{on}\quad \partial \Omega \times (0,T)\,, \\ u(x,0)=0 \quad \mbox{in}\quad \Omega \,, \\ u_t(x,0)=0 \quad \mbox{in}\quad \Omega \,, \end{array}\right.}\] where $\Omega $ is a bounded domain in $\mathbb {R}^N$ with smooth boundary $\partial \Omega $, $L$ is an elliptic operator, $\varepsilon $ is a positive parameter, $f(s)$ is a positive, increasing, convex function for $s\in (-\infty ,b)$, $\lim _{s\rightarrow b}f(s)=\infty $ and $\int _0^b\frac{ds}{f(s)}<\infty $ with $b=\operatorname{const}>0$. Under some assumptions, we show that the solution of the above problem quenches in a finite time and its quenching time goes to that of the solution of the following differential equation \[ {\left\rbrace \begin{array}{ll} \alpha ^{\prime \prime }(t)=f(\alpha (t))\,,&\quad t>0\,, \\ \alpha (0)=0\,,\quad \alpha ^{\prime }(0)=0\,, \end{array}\right.}\] as $\varepsilon $ goes to zero. We also show that the above result remains valid if the domain $\Omega $ is large enough and its size is taken as parameter. Finally, we give some numerical results to illustrate our analysis.
LA - eng
KW - nonlinear wave equations; quenching; convergence; numerical quenching time; nonlinear wave equation; quenching; convergence; numerical quenching time
UR - http://eudml.org/doc/250555
ER -

References

top
  1. Abia, L. M., López-Marcos, J. C., Martínez, J., 10.1016/S0168-9274(97)00105-0, Appl. Numer. Math. 26 (1998), 399–414. (1998) MR1612360DOI10.1016/S0168-9274(97)00105-0
  2. Boni, T. K., On quenching of solution for some semilinear parabolic equation of second order, Bull. Belg. Math. Soc. 5 (2000), 73–95. (2000) MR1741748
  3. Boni, T. K., 10.1016/S0764-4442(01)02078-X, C. R. Acad. Sci. Paris Sér. I Math. 333 (8) (2001), 795–800. (2001) Zbl0999.35004MR1868956DOI10.1016/S0764-4442(01)02078-X
  4. Chang, H., Levine, H. A., 10.1137/0512075, SIAM J. Math. Anal. 12 (1982), 893–903. (1982) MR0635242DOI10.1137/0512075
  5. Friedman, A., Lacey, A. A., 10.1137/0518054, SIAM J. Math. Anal. 18 (1987), 711–721. (1987) Zbl0643.35013MR0883563DOI10.1137/0518054
  6. Glassey, R. T., 10.1007/BF01213863, Math. Z. 132 (1973), 183–203. (1973) Zbl0247.35083MR0340799DOI10.1007/BF01213863
  7. Kaplan, S., 10.1002/cpa.3160160307, Comm. Pure Appl. Math. 16 (1963), 305–330. (1963) Zbl0156.33503MR0160044DOI10.1002/cpa.3160160307
  8. Keller, J. B., 10.1002/cpa.3160100404, Comm. Pure Appl. Math. 10 (1957), 523–530. (1957) Zbl0090.31802MR0096889DOI10.1002/cpa.3160100404
  9. Levine, H. A., Instability and nonexistence of global solutions to nonlinear wave equations of the form ρ u t t = - A v + F ( u ) , Trans. Amer. Math. Soc. 192 (1974), 1–21. (1974) MR0344697
  10. Levine, H. A., 10.1137/0505015, SIAM J. Math. Anal. 5 (1974), 138–146. (1974) Zbl0243.35069MR0399682DOI10.1137/0505015
  11. Levine, H. A., 10.1137/0514088, SIAM J. Math. Anal. 14 (1983), 1139–1153. (1983) MR0718814DOI10.1137/0514088
  12. Levine, H. A., The phenomenon of quenching: A survey , Proc. VIth International Conference on Trends in the Theory and Practice of Nonlinear Analysis (Lakshmitanthan, V., ed.), Elservier Nork-Holland, New York, 1985. (1985) Zbl0581.35037MR0817500
  13. Levine, H. A., Smiley, M. W., The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions, J. Math. Anal. Appl. 103 (1984), 409–427. (1984) MR0718814
  14. Protter, M. H., Weinberger, H. F., Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs, NJ, 1967. (1967) MR0219861
  15. Rammaha, M. A., On the quenching of solutions of the wave equation with a nonlinear boundary condition, J. Reine Angew. Math. 407 (1990), 1–18. (1990) Zbl0698.35088MR1048525
  16. Reed, M., Abstract nonlinear wave equations, Lecture Notes in Math., vol. 507, Springer-Verlag Berlin, New-York, 1976. (1976) Zbl0319.35060MR0605679
  17. Sattinger, D. H., 10.1007/BF00250942, Arch. Rational Mech. Anal. 30 (1968), 148–172. (1968) Zbl0159.39102MR0227616DOI10.1007/BF00250942
  18. Smith, R. A., 10.1137/0520072, SIAM J. Math. Anal. 20 (1989), 1081–1094. (1989) Zbl0687.35056MR1009347DOI10.1137/0520072
  19. Walter, W., Differential-und Integral-Ungleichungen, Springer, Berlin, 1954. (1954) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.