General implicit variational inclusion problems involving -maximal relaxed accretive mappings in Banach spaces
Archivum Mathematicum (2009)
- Volume: 045, Issue: 3, page 171-177
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topVerma, Ram U.. "General implicit variational inclusion problems involving $A$-maximal relaxed accretive mappings in Banach spaces." Archivum Mathematicum 045.3 (2009): 171-177. <http://eudml.org/doc/250556>.
@article{Verma2009,
abstract = {A class of existence theorems in the context of solving a general class of nonlinear implicit inclusion problems are examined based on $A$-maximal relaxed accretive mappings in a real Banach space setting.},
author = {Verma, Ram U.},
journal = {Archivum Mathematicum},
keywords = {implicit variational inclusions; maximal relaxed accretive mapping; $A$-maximal accretive mapping; generalized resolvent operator; implicit variational inclusion; maximal relaxed accretive mapping; -maximal accretive mapping; generalized resolvent operator},
language = {eng},
number = {3},
pages = {171-177},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {General implicit variational inclusion problems involving $A$-maximal relaxed accretive mappings in Banach spaces},
url = {http://eudml.org/doc/250556},
volume = {045},
year = {2009},
}
TY - JOUR
AU - Verma, Ram U.
TI - General implicit variational inclusion problems involving $A$-maximal relaxed accretive mappings in Banach spaces
JO - Archivum Mathematicum
PY - 2009
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 045
IS - 3
SP - 171
EP - 177
AB - A class of existence theorems in the context of solving a general class of nonlinear implicit inclusion problems are examined based on $A$-maximal relaxed accretive mappings in a real Banach space setting.
LA - eng
KW - implicit variational inclusions; maximal relaxed accretive mapping; $A$-maximal accretive mapping; generalized resolvent operator; implicit variational inclusion; maximal relaxed accretive mapping; -maximal accretive mapping; generalized resolvent operator
UR - http://eudml.org/doc/250556
ER -
References
top- Dhage, B. C., Verma, R. U., Second order boundary value problems of discontinuous differential inclusions, Comm. Appl. Nonlinear Anal. 12 (3) (2005), 37–44. (2005) Zbl1088.34505MR2142916
- Fang, Y. P., Huang, N. J., 10.1016/S0893-9659(04)90099-7, Appl. Math. Lett. 17 (2004), 647–653. (2004) Zbl1056.49012MR2064175DOI10.1016/S0893-9659(04)90099-7
- Fang, Y. P., Huang, N. J., Thompson, H. B., 10.1016/j.camwa.2004.04.037, Comput. Math. Appl. 49 (2–3) (2005), 365–374. (2005) Zbl1068.49003MR2123413DOI10.1016/j.camwa.2004.04.037
- Huang, N. J., Fang, Y. P., Cho, Y. J., Perturbed three-step approximation processes with errors for a class of general implicit variational inclusions, J. Nonlinear Convex Anal. 4 (2) (2003), 301–308. (2003) Zbl1028.49006MR1999271
- Lan, H. Y., Cho, Y. J., Verma, R. U., 10.1016/j.camwa.2005.11.036, Comput. Math. Appl. 51 (2006), 1529–1538. (2006) Zbl1207.49011MR2237649DOI10.1016/j.camwa.2005.11.036
- Lan, H. Y., Kim, J. H., Cho, Y. J., 10.1016/j.jmaa.2005.11.067, J. Math. Anal. Appl. 327 (1) (2007), 481–493. (2007) MR2277428DOI10.1016/j.jmaa.2005.11.067
- Peng, J. W., 10.1016/j.aml.2005.04.009, Appl. Math. Lett. 19 (2006), 273–282. (2006) Zbl1102.47050MR2202416DOI10.1016/j.aml.2005.04.009
- Verma, R. U., On a class of nonlinear variational inequalities involving partially relaxed monotone and partially strongly monotone mappings, Math. Sci. Res. Hot-Line 4 (2) (2000), 55–63. (2000) Zbl1054.49010MR1742730
- Verma, R. U., 10.1007/s10957-006-9079-7, J. Optim. Theory Appl. 129 (3) (2006), 457–467. (2006) Zbl1123.49007MR2281151DOI10.1007/s10957-006-9079-7
- Verma, R. U., Averaging techniques and cocoercively monotone mappings, Math. Sci. Res. J. 10 (3) (2006), 79–82. (2006) Zbl1152.49011MR2231178
- Verma, R. U., 10.1007/s10957-006-9133-5, J. Optim. Theory Appl. 131 (1) (2006), 151–157. (2006) Zbl1107.49012MR2278302DOI10.1007/s10957-006-9133-5
- Verma, R. U., 10.1016/j.aml.2006.02.014, Appl. Math. Lett. 19 (2006), 1409–1413. (2006) Zbl1133.49014MR2264199DOI10.1016/j.aml.2006.02.014
- Verma, R. U., 10.2478/s11533-007-0005-5, Cent. Eur. J. Math. 5 (2) (2007), 1–11. (2007) Zbl1128.49011MR2300280DOI10.2478/s11533-007-0005-5
- Verma, R. U., General system of -monotone variational inclusion problems based on generalized hybrid algorithm, Nonlinear Anal. Hybrid Syst. 1 (3) (2007), 326–335. (2007) MR2339479
- Verma, R. U., 10.1016/j.jmaa.2007.01.114, J. Math. Anal. Appl. 337 (2008), 969–975. (2008) MR2386346DOI10.1016/j.jmaa.2007.01.114
- Verma, R. U., 10.1016/j.aml.2007.05.004, Appl. Math. Lett. 21 (2008), 355–360. (2008) Zbl1148.47039MR2406513DOI10.1016/j.aml.2007.05.004
- Xu, H. K., 10.1112/S0024610702003332, J. London Math. Soc. (2) 66 (2002), 240–256. (2002) Zbl1013.47032MR1911872DOI10.1112/S0024610702003332
- Zeidler, E., Nonlinear Functional Analysis and its Applications I, Springer-Verlag, New York, 1986. (1986) Zbl0583.47050MR0816732
- Zeidler, E., Nonlinear Functional Analysis and its Applications II/A, Springer-Verlag, New York, 1990. (1990) Zbl0684.47028MR1033497
- Zeidler, E., Nonlinear Functional Analysis and its Applications II/B, Springer-Verlag, New York, 1990. (1990) Zbl0684.47029MR1033498
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.