General implicit variational inclusion problems involving A -maximal relaxed accretive mappings in Banach spaces

Ram U. Verma

Archivum Mathematicum (2009)

  • Volume: 045, Issue: 3, page 171-177
  • ISSN: 0044-8753

Abstract

top
A class of existence theorems in the context of solving a general class of nonlinear implicit inclusion problems are examined based on A -maximal relaxed accretive mappings in a real Banach space setting.

How to cite

top

Verma, Ram U.. "General implicit variational inclusion problems involving $A$-maximal relaxed accretive mappings in Banach spaces." Archivum Mathematicum 045.3 (2009): 171-177. <http://eudml.org/doc/250556>.

@article{Verma2009,
abstract = {A class of existence theorems in the context of solving a general class of nonlinear implicit inclusion problems are examined based on $A$-maximal relaxed accretive mappings in a real Banach space setting.},
author = {Verma, Ram U.},
journal = {Archivum Mathematicum},
keywords = {implicit variational inclusions; maximal relaxed accretive mapping; $A$-maximal accretive mapping; generalized resolvent operator; implicit variational inclusion; maximal relaxed accretive mapping; -maximal accretive mapping; generalized resolvent operator},
language = {eng},
number = {3},
pages = {171-177},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {General implicit variational inclusion problems involving $A$-maximal relaxed accretive mappings in Banach spaces},
url = {http://eudml.org/doc/250556},
volume = {045},
year = {2009},
}

TY - JOUR
AU - Verma, Ram U.
TI - General implicit variational inclusion problems involving $A$-maximal relaxed accretive mappings in Banach spaces
JO - Archivum Mathematicum
PY - 2009
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 045
IS - 3
SP - 171
EP - 177
AB - A class of existence theorems in the context of solving a general class of nonlinear implicit inclusion problems are examined based on $A$-maximal relaxed accretive mappings in a real Banach space setting.
LA - eng
KW - implicit variational inclusions; maximal relaxed accretive mapping; $A$-maximal accretive mapping; generalized resolvent operator; implicit variational inclusion; maximal relaxed accretive mapping; -maximal accretive mapping; generalized resolvent operator
UR - http://eudml.org/doc/250556
ER -

References

top
  1. Dhage, B. C., Verma, R. U., Second order boundary value problems of discontinuous differential inclusions, Comm. Appl. Nonlinear Anal. 12 (3) (2005), 37–44. (2005) Zbl1088.34505MR2142916
  2. Fang, Y. P., Huang, N. J., 10.1016/S0893-9659(04)90099-7, Appl. Math. Lett. 17 (2004), 647–653. (2004) Zbl1056.49012MR2064175DOI10.1016/S0893-9659(04)90099-7
  3. Fang, Y. P., Huang, N. J., Thompson, H. B., 10.1016/j.camwa.2004.04.037, Comput. Math. Appl. 49 (2–3) (2005), 365–374. (2005) Zbl1068.49003MR2123413DOI10.1016/j.camwa.2004.04.037
  4. Huang, N. J., Fang, Y. P., Cho, Y. J., Perturbed three-step approximation processes with errors for a class of general implicit variational inclusions, J. Nonlinear Convex Anal. 4 (2) (2003), 301–308. (2003) Zbl1028.49006MR1999271
  5. Lan, H. Y., Cho, Y. J., Verma, R. U., 10.1016/j.camwa.2005.11.036, Comput. Math. Appl. 51 (2006), 1529–1538. (2006) Zbl1207.49011MR2237649DOI10.1016/j.camwa.2005.11.036
  6. Lan, H. Y., Kim, J. H., Cho, Y. J., 10.1016/j.jmaa.2005.11.067, J. Math. Anal. Appl. 327 (1) (2007), 481–493. (2007) MR2277428DOI10.1016/j.jmaa.2005.11.067
  7. Peng, J. W., 10.1016/j.aml.2005.04.009, Appl. Math. Lett. 19 (2006), 273–282. (2006) Zbl1102.47050MR2202416DOI10.1016/j.aml.2005.04.009
  8. Verma, R. U., On a class of nonlinear variational inequalities involving partially relaxed monotone and partially strongly monotone mappings, Math. Sci. Res. Hot-Line 4 (2) (2000), 55–63. (2000) Zbl1054.49010MR1742730
  9. Verma, R. U., 10.1007/s10957-006-9079-7, J. Optim. Theory Appl. 129 (3) (2006), 457–467. (2006) Zbl1123.49007MR2281151DOI10.1007/s10957-006-9079-7
  10. Verma, R. U., Averaging techniques and cocoercively monotone mappings, Math. Sci. Res. J. 10 (3) (2006), 79–82. (2006) Zbl1152.49011MR2231178
  11. Verma, R. U., 10.1007/s10957-006-9133-5, J. Optim. Theory Appl. 131 (1) (2006), 151–157. (2006) Zbl1107.49012MR2278302DOI10.1007/s10957-006-9133-5
  12. Verma, R. U., 10.1016/j.aml.2006.02.014, Appl. Math. Lett. 19 (2006), 1409–1413. (2006) Zbl1133.49014MR2264199DOI10.1016/j.aml.2006.02.014
  13. Verma, R. U., 10.2478/s11533-007-0005-5, Cent. Eur. J. Math. 5 (2) (2007), 1–11. (2007) Zbl1128.49011MR2300280DOI10.2478/s11533-007-0005-5
  14. Verma, R. U., General system of ( A , η ) -monotone variational inclusion problems based on generalized hybrid algorithm, Nonlinear Anal. Hybrid Syst. 1 (3) (2007), 326–335. (2007) MR2339479
  15. Verma, R. U., 10.1016/j.jmaa.2007.01.114, J. Math. Anal. Appl. 337 (2008), 969–975. (2008) MR2386346DOI10.1016/j.jmaa.2007.01.114
  16. Verma, R. U., 10.1016/j.aml.2007.05.004, Appl. Math. Lett. 21 (2008), 355–360. (2008) Zbl1148.47039MR2406513DOI10.1016/j.aml.2007.05.004
  17. Xu, H. K., 10.1112/S0024610702003332, J. London Math. Soc. (2) 66 (2002), 240–256. (2002) Zbl1013.47032MR1911872DOI10.1112/S0024610702003332
  18. Zeidler, E., Nonlinear Functional Analysis and its Applications I, Springer-Verlag, New York, 1986. (1986) Zbl0583.47050MR0816732
  19. Zeidler, E., Nonlinear Functional Analysis and its Applications II/A, Springer-Verlag, New York, 1990. (1990) Zbl0684.47028MR1033497
  20. Zeidler, E., Nonlinear Functional Analysis and its Applications II/B, Springer-Verlag, New York, 1990. (1990) Zbl0684.47029MR1033498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.