# Asymptotic behavior of nonlinear systems in varying domains with boundary conditions on varying sets

Carmen Calvo-Jurado; Juan Casado-Díaz; Manuel Luna-Laynez

ESAIM: Control, Optimisation and Calculus of Variations (2009)

- Volume: 15, Issue: 1, page 49-67
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topCalvo-Jurado, Carmen, Casado-Díaz, Juan, and Luna-Laynez, Manuel. "Asymptotic behavior of nonlinear systems in varying domains with boundary conditions on varying sets." ESAIM: Control, Optimisation and Calculus of Variations 15.1 (2009): 49-67. <http://eudml.org/doc/250570>.

@article{Calvo2009,

abstract = {
For a fixed bounded open set $\Omega\subset\mathbb\{R\}^N$, a sequence of open sets
$\Omega_n\subset\Omega$ and a sequence of sets
$\Gamma_n\subset\partial\Omega\cap\partial\Omega_n$, we study the
asymptotic behavior of the solution of a nonlinear elliptic
system posed on $\Omega_n$, satisfying Neumann boundary conditions
on $\Gamma_n$ and Dirichlet boundary conditions on $\partial\Omega_n\setminus \Gamma_n$. We obtain a representation
of the limit problem which is stable by homogenization and we
prove that this representation depends on $\Omega_n$ and
$\Gamma_n$ locally.
},

author = {Calvo-Jurado, Carmen, Casado-Díaz, Juan, Luna-Laynez, Manuel},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Homogenization; varying
domains; nonlinear problems; mixed boundary conditions},

language = {eng},

month = {1},

number = {1},

pages = {49-67},

publisher = {EDP Sciences},

title = {Asymptotic behavior of nonlinear systems in varying domains with boundary conditions on varying sets},

url = {http://eudml.org/doc/250570},

volume = {15},

year = {2009},

}

TY - JOUR

AU - Calvo-Jurado, Carmen

AU - Casado-Díaz, Juan

AU - Luna-Laynez, Manuel

TI - Asymptotic behavior of nonlinear systems in varying domains with boundary conditions on varying sets

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2009/1//

PB - EDP Sciences

VL - 15

IS - 1

SP - 49

EP - 67

AB -
For a fixed bounded open set $\Omega\subset\mathbb{R}^N$, a sequence of open sets
$\Omega_n\subset\Omega$ and a sequence of sets
$\Gamma_n\subset\partial\Omega\cap\partial\Omega_n$, we study the
asymptotic behavior of the solution of a nonlinear elliptic
system posed on $\Omega_n$, satisfying Neumann boundary conditions
on $\Gamma_n$ and Dirichlet boundary conditions on $\partial\Omega_n\setminus \Gamma_n$. We obtain a representation
of the limit problem which is stable by homogenization and we
prove that this representation depends on $\Omega_n$ and
$\Gamma_n$ locally.

LA - eng

KW - Homogenization; varying
domains; nonlinear problems; mixed boundary conditions

UR - http://eudml.org/doc/250570

ER -

## References

top- C. Calvo-Jurado and J. Casado-Díaz, The limit of Dirichlet systems for variable monotone operators in general perforated domains. J. Math. Pures Appl.81 (2002) 471–493. Zbl1035.35009
- C. Calvo-Jurado, J. Casado-Díaz and M. Luna-Laynez, Homogenization of elliptic problems with the Dirichlet and Neumann conditions imposed on varying subsets. Math. Meth. Appl. Sci.30 (2007) 1611–1625. Zbl1134.35011
- J. Casado-Díaz, Homogenization of general quasi-linear Dirichlet problems with quadratic growth in perforated domains. J. Math. Pures Appl.76 (1997) 431–476. Zbl0880.35015
- J. Casado-Díaz, Homogenization of Dirichlet problems for monotone operators in varying domains. Proc. Roy. Soc. Edinburgh A127 (1997) 457–478. Zbl0877.35013
- J. Casado-Díaz and A. Garroni, Asymptotic behavior of nonlinear elliptic systems on varying domains. SIAM J. Math. Anal.31 (2000) 581–624. Zbl0952.35036
- D. Cionarescu and F. Murat, Un terme étrange venu d'ailleurs, in Nonlinear partial differential equations and their applications, Collège de France seminar, Vols. II and III, H. Brézis and J.-L. Lions Eds., Research Notes in Math.60 and 70, Pitman, London (1982) 98–138 and 154–78.
- G. Dal Maso and A. Defranceschi, Limits of nonlinear Dirichlet problems in varying domains. Manuscripta Math.61 (1988) 251–278. Zbl0653.49017
- G. Dal Maso and A. Garroni, New results on the asymptotic behaviour of Dirichlet problems in perforated domains. Math. Mod. Meth. Appl. Sci.3 (1994) 373–407. Zbl0804.47050
- G. Dal Maso and U. Mosco, Wiener-criterion and $\Gamma $-convergence. Appl. Math. Optim.15 (1987) 15–63. Zbl0644.35033
- G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for the Dirichlet problems in perforated domains with homogeneous monotone operators. Ann. Sc. Norm. Sup. Pisa7 (1997) 765–803. Zbl0899.35007
- G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains. Ann. Inst. H. Poincaré Anal. Non Linéaire21 (2004) 445–486. Zbl1110.35008
- G. Dal Maso, A. Garroni and I.V. Skrypnik, A capacitary method for the asymptotic analysis of Dirichlet problems for monotone operators. J. Anal. Math.71 (1997) 263–313. Zbl0889.35010
- A. Damlamian and T. Li, Boundary homogenization for elliptic problems. J. Math. Pures Appl.66 (1987) 351–361. Zbl0658.35023
- L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). Zbl0804.28001
- H. Federer and W.P. Ziemer, The Lebesgue set of a function whose distribution derivaties are p-th power sumable. Indiana Univ. Math. J.22 (1972) 139–158. Zbl0238.28015
- J. Leray and J.-L. Lions, Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France93 (1965) 97–107. Zbl0132.10502
- J. Necas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967).
- J. Serrin, Local behaviour of solutions of quasilinear equations. Acta Math.111 (1964) 302–347. Zbl0128.09101
- I.V. Skrypnik, Asymptotic behaviour of solutions of nonlinear elliptic problems in perforated domains. Mat. Sb.184 (1993) 67–90.
- I.V. Skrypnik, Averaging of quasilinear parabolic problems in domains with fine-grained boundary. Diff. Equations31 (1995) 327–339. Zbl0856.35068
- W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, Berlin (1989).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.